# The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 

## 2014 Cayley Contest

(Grade 10)

Thursday, February 20, 2014 (in North America and South America)

Friday, February 21, 2014
(outside of North America and South America)

Solutions

1. We rearrange the given expression to obtain $2000+200-80-120$.

Since $200-80-120=0$, then $2000+200-80-120=2000$.
Alternatively, we could have evaluated each operation in order to obtain

$$
2000-80+200-120=1920+200-120=2120-120=2000
$$

Answer: (A)
2. Since $(2)(3)(4)=6 x$, then $6(4)=6 x$. Dividing both sides by 6 , we obtain $x=4$.

Answer: (E)
3. The unlabelled angle inside the triangle equals its vertically opposite angle, or $40^{\circ}$.

Since the sum of the angles in a triangle is $180^{\circ}$, then $40^{\circ}+60^{\circ}+x^{\circ}=180^{\circ}$ or $100+x=180$. Thus, $x=80$.

Answer: (C)
4. The line representing a temperature of $3^{\circ}$ is the horizontal line passing halfway between $2^{\circ}$ and $4^{\circ}$ on the vertical axis.
There are two data points on this line: one at 2 p.m. and one at 9 p.m.
The required time is 9 p.m.
Answer: (A)
5. Since $2 n+5=16$, then $2 n-3=(2 n+5)-8=16-8=8$.

Alternatively, we could solve the equation $2 n+5=16$ to obtain $2 n=11$ or $n=\frac{11}{2}$.
From this, we see that $2 n-3=2\left(\frac{11}{2}\right)-3=11-3=8$.
Answer: (A)
6. Since $3=\frac{6}{2}$ and $\frac{5}{2}<\frac{6}{2}$, then $\frac{5}{2}<3$.

Since $3=\sqrt{9}$ and $\sqrt{9}<\sqrt{10}$, then $3<\sqrt{10}$.
Thus, $\frac{5}{2}<3<\sqrt{10}$, and so the list of the three numbers in order from smallest to largest is $\frac{5}{2}, 3, \sqrt{10}$.

Answer: (B)
7. $20 \%$ of the number 100 is 20 , so when 100 is increased by $20 \%$, it becomes $100+20=120$.
$50 \%$ of a number is half of that number, so $50 \%$ of 120 is 60 .
Thus, when 120 is increased by $50 \%$, it becomes $120+60=180$.
Therefore, Meg's final result is 180 .
Answer: (E)
8. Since $\triangle P Q R$ is right-angled at $P$, we can use the Pythagorean Theorem.

We obtain $P Q^{2}+P R^{2}=Q R^{2}$ or $10^{2}+P R^{2}=26^{2}$.
This gives $P R^{2}=26^{2}-10^{2}=676-100=576$ and so $P R=\sqrt{576}=24$, since $P R>0$.
Since $\triangle P Q R$ is right-angled at $P$, its area equals $\frac{1}{2}(P R)(P Q)=\frac{1}{2}(24)(10)=120$.
Answer: (B)
9. We use $A, B, C, D, E$ to represent Amy, Bob, Carla, Dan, and Eric, respectively.

We use the greater than symbol $(>)$ to represent "is taller than" and the less than symbol $(<)$ to represent "is shorter than".
From the first bullet, $A>C$.
From the second bullet, $D<E$ and $D>B$ so $E>D>B$.
From the third bullet, $E<C$ or $C>E$.
Since $A>C$ and $C>E$ and $E>D>B$, then $A>C>E>D>B$, which means that Bob is the shortest.

Answer: (B)
10. Solution 1

We start from the OUTPUT and work back to the INPUT.
Since the OUTPUT 32 is obtained from adding 16 to the previous number, then the previous number is $32-16=16$.

$$
\text { INPUT } \rightarrow \text { Subtract } 8 \rightarrow \square \rightarrow \text { Divide by } 2 \rightarrow 16 \rightarrow \text { Add } 16 \rightarrow 32
$$

Since 16 is obtained by dividing the previous number by 2 , then the previous number is $2 \times 16$ or 32 .

$$
\text { INPUT } \rightarrow \text { Subtract } 8 \rightarrow 32 \rightarrow \text { Divide by } 2 \rightarrow 16 \rightarrow \text { Add } 16 \rightarrow 32
$$

Since 32 is obtained by subtracting 8 from the INPUT, then the INPUT must have been $32+8=40$.

$$
40 \rightarrow \text { Subtract } 8 \rightarrow 32 \rightarrow \text { Divide by } 2 \rightarrow 16 \rightarrow \text { Add } 16 \rightarrow 32
$$

## Solution 2

Suppose that the INPUT is $x$.
Subtracting 8 gives $x-8$.
Dividing this result by 2 gives $\frac{1}{2}(x-8)$ or $\frac{1}{2} x-4$.
Adding 16 to this result gives $\left(\frac{1}{2} x-4\right)+16=\frac{1}{2} x+12$, which is the OUTPUT.

$$
x \rightarrow \text { Subtract } 8 \rightarrow x-8 \rightarrow \text { Divide by } 2 \rightarrow \frac{1}{2} x-4 \rightarrow \text { Add } 16 \rightarrow \frac{1}{2} x+12
$$

If the OUTPUT is 32 , then $\frac{1}{2} x+12=32$ or $\frac{1}{2} x=20$ and so $x=40$.
Therefore, the INPUT must have been 40 .
Answer: (D)
11. We consider the equation of the line shown in the form $y=m x+b$.

The slope, $m$, of the line shown is negative.
The $y$-intercept, $b$, of the line shown is positive.
Of the given choices only $y=-2 x+3$ has $m<0$ and $b>0$.
Therefore, a possible equation for the line is $y=-2 x+3$.
Answer: (E)
12. Since $x=2 y$, then $(x-y)(2 x+y)=(2 y-y)(2(2 y)+y)=(y)(5 y)=5 y^{2}$.

Answer: (A)
13. Erika assembling 9 calculators is the same as assembling three groups of 3 calculators.

Since Erika assembles 3 calculators in the same amount of time that Nick assembles 2 calculators, then he assembles three groups of 2 calculators (that is, 6 calculators) in this time.
Since Nick assembles 1 calculator in the same amount of time that Sam assembles 3 calculators, then Sam assembles 18 calculators while Nick assembles 6 calculators.
Thus, the three workers assemble $9+6+18=33$ calculators while Erika assembles 9 calculators.
Answer: (E)
14. Since $1 \mathrm{~GB}=1024 \mathrm{MB}$, then Julia's 300 GB hard drive has $300 \times 1024=307200 \mathrm{MB}$ of storage space.
When Julia puts 300000 MB of data on the empty hard drive, the amount of empty space remaining is $307200-300000=7200 \mathrm{MB}$.

Answer: (C)
15. From the second row, $\triangle+\triangle+\triangle+\triangle=24$ or $4 \triangle=24$, and so $\triangle=6$.

From the first row, $\Omega+\Delta+\Delta+\odot=26$ or $2 \Omega+2 \triangle=26$.
Since $\triangle=6$, then $2 \triangle=26-12=14$, and so $\triangle=7$.
From the fourth row, $\square+\odot+\square+\triangle=33$.
Since $\triangle=6$ and $\triangle=7$, then $2 \square+7+6=33$, and so $2 \square=20$ or $\square=10$.
Finally, from the third row, $\square+>+\odot+\leqslant=27$.
Since $\square=10$ and $\odot=7$, then $2=27-10-7=10$.
Thus, $=5$.
Answer: (A)
16. The mean number of hamburgers eaten per student equals the total number of hamburgers eaten divided by the total number of students.
12 students each eat 0 hamburgers. This is a total of 0 hamburgers eaten.
14 students each eat 1 hamburger. This is a total of 14 hamburgers eaten.
8 students each eat 2 hamburgers. This is a total of 16 hamburgers eaten.
4 students each eat 3 hamburgers. This is a total of 12 hamburgers eaten.
2 students each eat 4 hamburgers. This is a total of 8 hamburgers eaten.
Thus, a total of $0+14+16+12+8=50$ hamburgers are eaten.
The total number of students is $12+14+8+4+2=40$.
Therefore, the mean number of hamburgers eaten is $\frac{50}{40}=1.25$.
Answer: (C)
17. A circle with area $36 \pi$ has radius 6 , since the the area of a circle with radius $r$ equals $\pi r^{2}$ and $\pi\left(6^{2}\right)=36 \pi$.
The circumference of a circle with radius 6 equals $2 \pi(6)=12 \pi$.
Therefore, each quarter-circle contributes $\frac{1}{4}(12 \pi)=3 \pi$ to the circumference.
The perimeter of the given figure consists of three quarter-circle sections and two radii from the circle.
Thus, its perimeter is $3(3 \pi)+2(6)=9 \pi+12$.
Answer: (B)
18. Suppose that the number of $2 \phi$ stamps that Sonita buys is $x$.

Then the number of $1 \phi$ stamps that she buys is $10 x$.
The total value of the $2 \phi$ and $1 \phi$ stamps that she buys is $2(x)+1(10 x)=12 x$.
Since she buys some $5 ¢$ stamps as well and the total value of the stamps that she buys is $100 \phi$, then the value of the 5 $\Phi$ stamps that she buys is $(100-12 x)$ .
Thus, $100-12 x$ must be a multiple of 5 . Since 100 is a multiple of 5 , then $12 x$ must be a multiple of 5 , and so $x$ is a multiple of 5 (since 12 has no divisors larger than 1 in common with 5).

Note that $x>0$ (since she buys some $2 \phi$ stamps) and $x<9$ (since $12 x$ is less than 100 ). The only multiple of 5 between 0 and 9 is 5 , so $x=5$.
When $x=5$, the value of $5 \phi$ stamps is $100-12 x=100-12(5)=40 \phi$ and so she buys $\frac{40}{5}=8$ 5 \& stamps.
Finally, she buys 52 \& stamps, 501 ¢ stamps, and 85 d stamps, for a total of $5+50+8=63$ stamps.
(Checking, these stamps are worth $5(2)+50(1)+8(5)=10+50+40=100 \phi$ in total, as required.)
19. There are ten possible pairs of numbers that can be chosen: -3 and $-1 ;-3$ and $0 ;-3$ and 2 ; -3 and $4 ;-1$ and $0 ;-1$ and $2 ;-1$ and $4 ; 0$ and $2 ; 0$ and $4 ; 2$ and 4 . Each pair is equally likely to be chosen.
Pairs that include 0 ( 4 pairs) have a product of 0 ; pairs that do not include 0 ( 6 of them) do not have a product of 0 .
Therefore, the probability that a randomly chosen pair has a product of 0 is $\frac{4}{10}$ or $\frac{2}{5}$.
Answer: (D)
20. The layer sum of $w x y z$ equals 2014.

This means that the sum of the integer with digits $w x y z$, the integer with digits $x y z$, the integer with digits $y z$, and the integer $z$ is 2014.
Note that the integer with digits $w x y z$ equals $1000 w+100 x+10 y+z$, the integer with digits $x y z$ equals $100 x+10 y+z$, and the integer with digits $y z$ equals $10 y+z$.
Therefore, we have

$$
(1000 w+100 x+10 y+z)+(100 x+10 y+z)+(10 y+z)+z=2014
$$

or

$$
1000 w+200 x+30 y+4 z=2014 \quad(*)
$$

Each of $w, x, y, z$ is a single digit and $w \neq 0$.
Now $w$ cannot be 3 or greater, or the left side of $(*)$ would be at least 3000 , which is too large. Thus, $w=1$ or $w=2$.
If $w=2$, then $2000+200 x+30 y+4 z=2014$ and so $200 x+30 y+4 z=14$ or $100 x+15 y+2 z=7$. This would mean that $x=y=0$ (since otherwise the terms $100 x+15 y$ would contribute more than 7 ), which gives $2 z=7$ which has no integer solutions. Thus, $w \neq 2$.
Therefore, $w=1$.
This gives $1000+200 x+30 y+4 z=2014$ and so $200 x+30 y+4 z=1014$ or $100 x+15 y+2 z=507$.
Since $0 \leq y \leq 9$ and $0 \leq z \leq 9$, then $0 \leq 15 y+2 z \leq 15(9)+2(9)=153$.
Since $100 x$ is a multiple of 100 and $0 \leq 15 y+2 z \leq 153$, then $100 x=400$ or $100 x=500$ so $15 y+2 z=507-400=107$ or $15 y+2 z=507-500=7$. From above, we saw that $15 y+2 z$ cannot equal 7 , so $15 y+2 z=107$, which means that $100 x=400$ or $x=4$.
Thus, $15 y+2 z=107$.
Since $2 z$ is even, then $15 y$ must be odd to make $15 y+2 z$ odd.
The odd multiples of 15 less than 107 are $15,45,75,105$.
Since $0 \leq 2 z \leq 18$, then we must have $15 y=105$ or $y=7$. This gives $2 z=2$ or $z=1$.
Therefore, the integer $w x y z$ is 1471. (Checking, $1471+471+71+1=2014$.)
Finally, $w+x+y+z=1+4+7+1=13$.
21. Suppose that $R$ is the point at the bottom of the solid directly under $Q$ and $S$ is the back left bottom corner of the solid (unseen in the problem's diagram).
Since $Q R$ is perpendicular to the bottom surface of the solid, then $\triangle P R Q$ is right-angled at $R$ and so $P Q^{2}=P R^{2}+R Q^{2}$.
We note also that $\triangle P S R$ is right-angled at $S$, since the solid is made up of cubes.
Therefore, $P R^{2}=P S^{2}+S R^{2}$.


This tells us that $P Q^{2}=P S^{2}+S R^{2}+R Q^{2}$.
Since the edge length of each cube in the diagram is 1 , then $P S=1, S R=4$, and $R Q=3$.
Therefore, $P Q^{2}=1^{2}+4^{2}+3^{2}=26$.
Since $P Q>0$, then $P Q=\sqrt{26}$.
Answer: (B)
22. We write such a five-digit positive integer with digits $V W X Y Z$.

We want to count the number of ways of assigning $1,3,5,7,9$ to the digits $V, W, X, Y, Z$ in such a way that the given properties are obeyed.
From the given conditions, $W>X, W>V, Y>X$, and $Y>Z$.
The digits 1 and 3 cannot be placed as $W$ or $Y$, since $W$ and $Y$ are larger than both of their neighbouring digits, while 1 is smaller than all of the other digits and 3 is only larger than one of the other possible digits.
The digit 9 cannot be placed as $V, X$ or $Z$ since it is the largest possible digit and so cannot be smaller than $W$ or $Y$. Thus, 9 is placed as $W$ or as $Y$.
Therefore, the digits $W$ and $Y$ are 9 and either 5 or 7 .
Suppose that $W=9$ and $Y=5$. The number is thus $V 9 X 5 Z$.
Neither $X$ or $Z$ can equal 7 since $7>5$, so $V=7 . X$ and $Z$ are then 1 and 3 or 3 and 1 .
There are 2 possible integers in this case.
Similarly, if $Y=9$ and $W=5$, there are 2 possible integers.
Suppose that $W=9$ and $Y=7$. The number is thus $V 9 X 7 Z$.
The digits $1,3,5$ can be placed in any of the remaining spots. There are 3 choices for the digit $V$. For each of these choices, there are 2 choices for $X$ and then 1 choice for $Z$.
There are thus $3 \times 2 \times 1=6$ possible integers in this case.
Similarly, if $Y=9$ and $W=7$, there are 6 possible integers.
Overall, there are thus $2+2+6+6=16$ possible integers.
23. We call Clarise's spot $C$ and Abe's spot $A$.

Consider a circle centred at $C$ with radius 10 m . Since $A$ is 10 m from $C$, then $A$ is on this circle.
Bob starts at $C$ and picks a direction to walk, with every direction being equally likely to be chosen. We model this by having Bob choose an angle $\theta$ between $0^{\circ}$ and $360^{\circ}$ and walk 10 m along a segment that makes this angle when measured counterclockwise from $C A$.
Bob ends at point $B$, which is also on the circle.


We need to determine the probability that $A B<A C$.
Since the circle is symmetric above and below the diameter implied by $C A$, we can assume that $\theta$ is between $0^{\circ}$ and $180^{\circ}$ as the probability will be the same below the diameter.
Consider $\triangle C A B$ and note that $C A=C B=10 \mathrm{~m}$.
It will be true that $A B<A C$ whenever $A B$ is the shortest side of $\triangle A B C$.
$A B$ will be the shortest side of $\triangle A B C$ whenever it is opposite the smallest angle of $\triangle A B C$. (In any triangle, the shortest side is opposite the smallest angle and the longest side is opposite the largest angle.)
Since $\triangle A B C$ is isosceles with $C A=C B$, then $\angle C A B=\angle C B A$.
We know that $\theta=\angle A C B$ is opposite $A B$ and $\angle A C B+\angle C A B+\angle C B A=180^{\circ}$.
Since $\angle C A B=\angle C B A$, then $\angle A C B+2 \angle C A B=180^{\circ}$ or $\angle C A B=90^{\circ}-\frac{1}{2} \angle A C B$.
If $\theta=\angle A C B$ is smaller than $60^{\circ}$, then $\angle C A B=90^{\circ}-\frac{1}{2} \theta$ will be greater than $60^{\circ}$.
Similarly, if $\angle A C B$ is greater than $60^{\circ}$, then $\angle C A B=90^{\circ}-\frac{1}{2} \theta$ will be smaller than $60^{\circ}$.
Therefore, $A B$ is the shortest side of $\triangle A B C$ whenever $\theta$ is between $0^{\circ}$ and $60^{\circ}$.
Since $\theta$ is uniformly chosen in the range $0^{\circ}$ to $180^{\circ}$ and $60^{\circ}=\frac{1}{3}\left(180^{\circ}\right)$, then the probability that $\theta$ is in the desired range is $\frac{1}{3}$.
Therefore, the probability that Bob is closer to Abe than Clarise is to Abe is $\frac{1}{3}$.
(Note that we can ignore the cases $\theta=0^{\circ}, \theta=60^{\circ}$ and $\theta=180^{\circ}$ because these are only three specific cases out of an infinite number of possible values for $\theta$.)

Answer: (B)
24. For each positive integer $n, S(n)$ is defined to be the smallest positive integer divisible by each of $1,2,3, \ldots, n$. In other words, $S(n)$ is the least common multiple (lcm) of $1,2,3, \ldots, n$. To calculate the lcm of a set of numbers, we

- determine the prime factorization of each number in the set,
- determine the list of prime numbers that occur in these prime factorizations,
- determine the highest power of each prime number from this list that occurs in the prime factorizations, and
- multiply these highest powers together.

For example, to calculate $S(8)$, we determine the lcm of $1,2,3,4,5,6,7,8$.
The prime factorizations of the numbers $2,3,4,5,6,7,8$ are $2,3,2^{2}, 5,2 \cdot 3,7,2^{3}$.

The primes used in this list are $2,3,5,7$, with highest powers $2^{3}, 3^{1}, 5^{1}, 7^{1}$.
Therefore, $S(8)=2^{3} \cdot 3^{1} \cdot 5^{1} \cdot 7^{1}$.
Since $S(n)$ is the lcm of $1,2,3, \ldots, n$ and $S(n+4)$ is the lcm of $1,2,3, \ldots, n, n+1, n+2, n+3, n+4$, then $S(n) \neq S(n+4)$ if either (i) there are prime factors that occur in $n+1, n+2, n+3, n+4$ that don't occur in $1,2,3, \ldots, n$ or (ii) there is a higher power of a prime that occurs in the factorizations of one of $n+1, n+2, n+3, n+4$ that doesn't occur in any of $1,2,3, \ldots, n$.
For (i) to occur, consider a prime number $p$ that is a divisor of one of $n+1, n+2, n+3, n+4$ and none of $1,2,3, \ldots, n$. This means that the smallest positive integer that has $p$ as a divisor is one of the integers $n+1, n+2, n+3, n+4$, which in fact means that this integer equals $p$. (The smallest multiple of a prime $p$ is $1 \cdot p$, or $p$ itself.)
Thus, for (i) to occur, one of $n+1, n+2, n+3, n+4$ is a prime number.
For (ii) to occur, consider a prime power $p^{k}$ (with $k>1$ ) that is a divisor of one of $n+1$, $n+2, n+3, n+4$ and none of $1,2,3, \ldots, n$. Using a similar argument to condition (i), one of $n+1, n+2, n+3, n+4$ must equal that prime power $p^{k}$.
Therefore, $S(n) \neq S(n+4)$ whenever one of $n+1, n+2, n+3, n+4$ is a prime number or a prime power.
In other words, $S(n)=S(n+4)$ whenever none of $n+1, n+2, n+3, n+4$ is a prime number or a prime power.
Therefore, we want to determine the positive integers $n$ with $1 \leq n \leq 100$ for which none of $n+1, n+2, n+3, n+4$ is a prime number or a prime power.
The prime numbers less than or equal to 104 are

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103
$$

(We go up to 104 since $n$ can be as large as 100 so $n+4$ can be as large as 104.)
The prime powers (with exponent at least 2) less than or equal to 100 are

$$
4,8,16,32,64,9,27,81,25,49
$$

There are 5 powers of 2,3 powers of 3,1 power of 5 , and 1 power of 7 in this list. No primes larger than 7 have a power less than 100 .
Therefore, we want to count the positive integers $n$ with $1 \leq n \leq 100$ for which none of $n+1, n+2, n+3, n+4$ appear in the list

$$
\begin{gathered}
2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53,59,61,64, \\
67,71,73,79,81,83,89,97,101,103
\end{gathered}
$$

For four consecutive integers not to occur in this list, we need a difference between adjacent numbers to be at least 5 .
The values of $n$ that satisfy this condition are $n=32,53,54,73,74,83,84,89,90,91,92$.
(For example, 54 is a value of $n$ that works since none of $55,56,57,58$ appears in the list.)
Therefore, there are 11 values of $n$ with $1 \leq n \leq 100$ for which $S(n)=S(n+4)$.
Answer: (C)
25. Suppose that $P$ has coordinates $P(0,2 a)$ for some real number $a$.

Since $P$ has $y$-coordinate greater than 0 and less than 100 , then $0<2 a<100$ or $0<a<50$.
We determine an expression for the radius of the circle in terms of $a$ and then determine how many values of $a$ give an integer radius.
We determine the desired expression by first finding the coordinates of the centre, $C$, of the
circle in terms of $a$, and then calculating the distance from $C$ to one of the points $O, P, Q$. If a circle passes through the three vertices $O, P$ and $Q$ of a triangle, then its centre is the point of intersection of the perpendicular bisectors of the sides $O P, O Q$, and $P Q$ of the triangle.
We determine the centre of the circle by finding the point of intersection of the perpendicular bisectors of $O P$ and $O Q$. (We could use $P Q$ instead, but this would be more complicated algebraically.)
Since $O$ has coordinates $(0,0)$ and $P$ has coordinates $(0,2 a)$, then $O P$ is vertical so its perpendicular bisector is horizontal.
The midpoint of $O P$ is $\left(\frac{1}{2}(0+0), \frac{1}{2}(0+2 a)\right)=(0, a)$.
Therefore, the perpendicular bisector of $O P$ is the horizontal line through $(0, a)$, and so has equation $y=a$.
Since $O$ has coordinates $(0,0)$ and $Q$ has coordinates $(4,4)$, then $O Q$ has slope $\frac{4-0}{4-0}=1$.
Therefore, a line perpendicular to $O Q$ has slope -1 .
The midpoint of $O Q$ is $\left(\frac{1}{2}(0+4), \frac{1}{2}(0+4)\right)=(2,2)$.
Therefore, the perpendicular bisector of $O Q$ has slope -1 and passes through $(2,2)$, so has equation $y-2=(-1)(x-2)$ or $y=-x+4$.
The centre of the desired circle is thus the point of intersection of the lines with equations $y=a$ and $y=-x+4$.
The $y$-coordinate of this point is $a$ and the $x$-coordinate is obtained by solving $a=-x+4$ and obtaining $x=4-a$.
Therefore, the coordinates of $C$ are $(4-a, a)$.
The radius, $r$, of the circle is the distance from $C$ to any of the three points $O, P$ and $Q$. It is easiest to find the distance from $O$ to $C$, which is

$$
r=\sqrt{(4-a)^{2}+a^{2}}=\sqrt{a^{2}-8 a+16+a^{2}}=\sqrt{2 a^{2}-8 a+16}
$$

We rewrite this as

$$
r=\sqrt{2\left(a^{2}-4 a+8\right)}=\sqrt{2\left(a^{2}-4 a+4+4\right)}=\sqrt{2\left((a-2)^{2}+4\right)}=\sqrt{2(a-2)^{2}+8}
$$

Since $(a-2)^{2} \geq 0$ and $(a-2)^{2}=0$ only when $a=2$, then the minimum value of $2(a-2)^{2}+8$ is 8 and this occurs when $a=2$. Thus, $r \geq \sqrt{8}$.
The expression $\sqrt{2(a-2)^{2}+8}$ is decreasing from $a=0$ to $a=2$ and then increasing from $a=2$ to $a=50$.
When $a=0, r=\sqrt{2(a-2)^{2}+8}=\sqrt{2(-2)^{2}+8}=4$.
When $a=2, r=\sqrt{2(a-2)^{2}+8}=\sqrt{2(0)^{2}+8}=\sqrt{8} \approx 2.83$.
When $a=50, r=\sqrt{2(a-2)^{2}+8}=\sqrt{2(48)^{2}+8}=\sqrt{4616} \approx 67.94$.
Therefore, when $0<a \leq 2$, we have $\sqrt{8} \leq r<4$ and when $2 \leq a<50$, we have $\sqrt{8} \leq r<$ $\sqrt{4616}$.
The expression $r=\sqrt{2(a-2)^{2}+8}$ will take every real number value in each of these ranges, because $b=2(a-2)^{2}+8$ represents the equation of a parabola which is a "smooth" curve.
Between $\sqrt{8} \approx 2.83$ and 4 , there is one integer value (namely, 3) which is achieved by the expression. (We do not count 4 since it is an endpoint that is not included.)
Between $\sqrt{8} \approx 2.83$ and $\sqrt{4616} \approx 67.94$, there are 65 integer values (namely, 3 to 67 , inclusive) which are achieved by the expression.
In total, there are $1+65=66$ integer values achieved by the expression in the allowable range for $a$, so there are 66 positions of $P$ for which the radius is an integer.

