0 (a). Evaluate $2 \times 0+1 \times 4$.

0 (b). Let t be TNYWR.
The average of the list of five numbers $13,16,10,15,11$ is m.
The average of the list of four numbers $16, t, 3,13$ is n.
What is the value of $m-n$?

0 (c). Let t be TNYWR.
The lines with equations $y=12$ and $y=2 x+t$ intersect at the point (a, b). What is the value of a ?

1 (a). Evaluate $\frac{1}{2}\left(\frac{1}{\frac{1}{9}}+\frac{1}{\frac{1}{6}}-\frac{1}{\frac{1}{5}}\right)$.

1 (b). Let t be TNYWR.
Determine the positive integer x that satisfies $2: m: t=m: 32: x$.

1 (c). Let t be TNYWR.
In the diagram, C lies on $A E$ and $A B=B C=C D$. If $\angle C D E=t^{\circ}, \angle D E C=(2 t)^{\circ}$, and $\angle B C A=\angle B C D=x^{\circ}$, determine the measure of $\angle A B C$.

2 (a). Suppose that a and b are positive integers with $2^{a} \times 3^{b}=324$.
Evaluate $2^{b} \times 3^{a}$.

2 (b). Let t be TNYWR.
Three siblings share a box of chocolates that contains t pieces. Sarah eats $\frac{1}{3}$ of the total number of chocolates and Andrew eats $\frac{3}{8}$ of the total number of chocolates. Cecily eats the remaining chocolates in the box. How many more chocolates does Sarah eat than Cecily eats?

2 (c). Let t be TNYWR.
In the diagram, the vertices of rectangle $A B C D$ lie on a circle. Diagonal $A C$ is a diameter of the circle and has length t. If $C D=2 A D$, find the area of the shaded region, and write your answer in the form $a \pi-\frac{b}{c}$ with a, b, c positive integers and with b and c having no common positive divisor larger than 1.

3 (a). What is the greatest common divisor of the three integers 36, 45 and 495 ?

3 (b). Let t be TNYWR.
In the diagram, all line segments meet at right angles. If the perimeter of the given shape is 162 units, what is the value of k ?

3 (c). Let t be TNYWR.
The expression $(t x+3)^{3}$ can be re-written in the form $a x^{3}+b x^{2}+c x+d$ for some positive integers a, b, c, d. Determine the value of the largest of a, b, c, and d.

