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Part A

1. Solution 1
Since ABCD is a parallelogram, then AB and DC are parallel and equal in length.
Since A and B both have a y-coordinate of 3, then AB is horizontal.
Since A has coordinates (2, 3) and B has coordinates (7, 3), then AB has length 7− 2 = 5.
Thus, DC is horizontal and has length 5.
Since D has y-coordinate 7, then C has y-coordinate 7.
Since DC has length 5 and the x-coordinate of D is 3, then the x-coordinate of C is 3 + 5 = 8.
Therefore, the coordinates of C are (8, 7).

Solution 2
Since ABCD is a parallelogram, then AD and BC are parallel and have the same length.
To move from A(2, 3) to D(3, 7), we move to the right 1 unit and we move up 4 units (since
the difference in x-coordinates is 1 and the difference in y-coordinates is 4).
Therefore, to get from B(7, 3) to C, we also move 1 unit right and 4 units up.
Thus, the coordinates of C are (7 + 1, 3 + 4) = (8, 7).

Answer: (8, 7)

2. Since Ben is not given the number 1, he is given the number 2, 3 or 4.
Since Wendy’s number and Riley’s number are one apart, then their numbers are consecutive.
Note that Wendy’s number is 1 greater than Riley’s number.
If Ben is given 2, then Riley and Wendy must be given 3 and 4. In this case, Sara gets 1.
If Ben is given 3, then Riley and Wendy must be given 1 and 2. In this case, Sara gets 4.
If Ben is given 4, then Riley and Wendy must be given 1 and 2, or 2 and 3. In the first of these
cases, Sara must be given 3. In the second of these cases, Sara must be given 1.
Therefore, Sara can be given 1, 3 and 4, and so cannot be given the number 2.

Answer: 2

3. Note that 99! = 99(98)(97) · · · (3)(2)(1) and 101! = 101(100)(99)(98)(97) · · · (3)(2)(1).
Thus, 101! = 101(100)(99!).
Therefore,

99!

101!− 99!
=

99!

101(100)(99!)− 99!
=

99!

99!(101(100)− 1)
=

1

101(100)− 1
=

1

10 099

Therefore, n = 10 099.

Answer: n = 10 099

4. Join FO and OC.
Since ABCDEF is a regular hexagon with side length 4, then FA = AB = BC = 4.
Since ABCDEF is a regular hexagon with centre O, then FO = AO = BO = CO.
Therefore, 4FOA, 4AOB and 4BOC are congruent triangles, by symmetry, since their
corresponding side lengths are equal.
Also, each of ∠FOA, ∠AOB and ∠BOC must be 1

6
of the total angle around O.

Thus, ∠FOA = ∠AOB = ∠BOC = 1
6
(360◦) = 60◦.

Since 4AOB is isosceles with AO = BO and ∠AOB = 60◦, then ∠OAB = ∠OBA, so
∠OAB = 1

2
(180◦ − ∠AOB) = 1

2
(180◦ − 60◦) = 60◦.

Thus, 4AOB is equilateral, and so AO = AB = 4.
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Now 4OAP has ∠OAP = 90◦ and ∠AOP = ∠AOB = 60◦. This means that 4OAP is a
30◦-60◦-90◦ triangle.
By the ratio of sides in a 30◦-60◦-90◦, AP =

√
3(AO) = 4

√
3.

Therefore, the area of 4OAP is 1
2
(OA)(AP ) = 1

2
(4)(4

√
3) = 8

√
3.

Answer: 8
√

3

5. We recall that a positive integer is divisible by 3 whenever the sum of its digits is divisible by 3.
Since the sum of the digits does not depend on the order of the digits, then rearranging the
digits of a positive integer that is divisible by 3 produces another positive integer that is divis-
ible by 3.
Note that 10 000 is not divisible by 3. Every other positive integer between 1000 and 10 000 is
a four-digit integer.
Consider a four-digit positive integer whose four digits are consecutive integers. We can rear-
range the digits of this integer in decreasing order to obtain one of the positive integers 3210,
4321, 5432, 6543, 7654, 8765, and 9876.
The sums of the digits of these integers are 6, 10, 14, 18, 22, 26, and 30, respectively.
Of these, 6, 18 and 30 are the only sums that are divisible by 3, so 3210, 6543 and 9876 are the
only ones divisible by 3.
Since rearranging the digits does not affect whether an integer is divisible by 3, then a four-digit
integer satisfies the given conditions if its digits are rearrangements of 3210 or 6543 or 9876.
There are 24 four-digit integers whose digits are rearrangements of 6543. (There are 4 possi-
bilities for the thousands digit, then 3 possibilities for the hundreds digit, then 2 possibilities
for the tens digit, and 1 possibility for the units digit, and so 4× 3× 2× 1 = 24 integers that
use these digits.)
Similarly, there are 24 four-digit integers whose digits are rearrangements of 9876.
Finally, there are 18 four-digit integers whose digits are rearrangements of 3210. (There are 3
possibilities for the thousands digits (because 0 cannot be the thousands digit), then 3 possibili-
ties for the hundreds digit, 2 for the tens digit, and 1 for the units digit, and so 3×3×2×1 = 18
integers that use these digits.)
In total, there are 24 + 24 + 18 = 66 positive integers with these three properties.

Answer: 66
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6. Solution 1
We consider two cases: y < 60 and y ≥ 60.
We use the facts that min(a, b) ≤ a, min(a, b) ≤ b, max(a, b) ≥ a, and max(a, b) ≥ b. In other
words, the minimum of two numbers is less than or equal to both numbers and the maximum
of two number is greater than or equal to both numbers.
We also use the fact that if a ≤ b, then min(a, b) = a and max(a, b) = b. Note that the case of
a = b does not affect these equations.

Case 1: y < 60
If y < 60, then min(x, y) ≤ y and y < 60, so min(x, y) < 60.
Since min(x, y) < 60, then LS = max(60,min(x, y)) = 60.
Also, max(60, x) ≥ 60, so since y < 60, then RS = min(max(60, x), y) = y.
Therefore, in the case y < 60, the equation is satisfied whenever 60 = y, which is never true.
Therefore, there are no ordered pairs (x, y) with y < 60 that satisfy the equation.

Case 2: y ≥ 60
If x < y, then min(x, y) = x and so LS = max(60, x).
If x < y, then both 60 and x are no larger than y, so the largest of 60 and x is no larger than
y. In other words, max(60, x) ≤ y and so RS = min(max(60, x), y) = max(60, x).
If x < y, the equation becomes max(60, x) = max(60, x) and so is true for every ordered pair
(x, y).

If x ≥ y, then min(x, y) = y and so LS = max(60, y) = y since y ≥ 60.
If x ≥ y, then x ≥ 60 so max(60, x) = x and so RS = min(x, y) = y.
If x ≥ y, the equation becomes y = y and so is true for every pair (x, y).

Therefore, the given equation is satisfied by all pairs (x, y) with y ≥ 60.
Since 1 ≤ x ≤ 100, there are 100 possible values for x.
Since 60 ≤ y ≤ 100, there are 41 possible values for y.
Therefore, there are 100× 41 = 4100 ordered pairs that satisfy the equation.

Solution 2
In this solution, we use the facts that if a ≤ b, then min(a, b) = a and max(a, b) = b.
We also label as (∗) the original equation max(60,min(x, y)) = min(max(60, x), y).

We consider the possible arrangements of the integers 60, x and y.
There are six possible arrangements. We examine the various pieces of the left and right sides
of the given equation for each of these orders, moving from the innermost function out on each
side:

Case min(x, y) LS = max(60,min(x, y)) max(60, x) RS = min(max(60, x), y)
60 ≤ x ≤ y = x = max(60, x) = x = x = min(x, y) = x

60 ≤ y ≤ x = y = max(60, y) = y = x = min(x, y) = y

x ≤ 60 ≤ y = x = max(60, x) = 60 = 60 = min(60, y) = 60

x ≤ y ≤ 60 = x = max(60, x) = 60 = 60 = min(60, y) = y

y ≤ 60 ≤ x = y = max(60, y) = 60 = x = min(x, y) = y

y ≤ x ≤ 60 = y = max(60, y) = 60 = 60 = min(60, y) = y

If 60 ≤ x ≤ y, then (∗) is equivalent to x = x, so all (x, y) with 60 ≤ x ≤ y satisfy (∗).
If 60 ≤ y ≤ x, then (∗) is equivalent to y = y, so all (x, y) with 60 ≤ y ≤ x satisfy (∗).
If x ≤ 60 ≤ y, then (∗) is equivalent to 60 = 60, so all (x, y) with x ≤ 60 ≤ y satisfy (∗).
If x ≤ y ≤ 60, then (∗) is equivalent to 60 = y, so only (x, y) with y = 60 and x ≤ 60 satisfy
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(∗). These (x, y) are already accounted for in the third case.
If y ≤ 60 ≤ x, then (∗) is equivalent to 60 = y, so only (x, y) with y = 60 and x ≥ 60 satisfy
(∗). These (x, y) are included in the second case.
If y ≤ x ≤ 60, then (∗) is equivalent to 60 = y, so only y = 60 and 60 ≤ x ≤ 60, which implies
x = 60. In this case, only the pair (60, 60) satisfies (∗) and this pair is already included in the
first case.

Therefore, we need to count the pairs of positive integers (x, y) with x ≤ 100 and y ≤ 100
which satisfy one of 60 ≤ x ≤ y or 60 ≤ y ≤ x or x ≤ 60 ≤ y.
From these three ranges for x and y we see that y ≥ 60 in all cases and x can either be less
than or equal to 60 or can be greater than or equal to 60 and either larger or smaller than y.
In other words, these three ranges are equivalent to the condition that y ≥ 60.
Therefore, (∗) is satisfied by all pairs (x, y) with y ≥ 60.
Since 1 ≤ x ≤ 100, there are 100 possible values for x.
Since 60 ≤ y ≤ 100, there are 41 possible values for y.
Therefore, there are 100× 41 = 4100 ordered pairs that satisfy the equation.

Answer: 4100



2013 Canadian Senior Mathematics Contest Solutions Page 6

Part B

1. (a) In the second bank of lockers, each of the first two columns consists of two lockers.
The first column consists of lockers 21 and 22, and the second column consists of lockers
23 and 24.
Thus, the sum of the locker numbers in the column containing locker 24 is 23 + 24 = 47.

(b) Suppose that a column contains two lockers, numbered x and x + 1, for some positive
integer x.
Then the sum of the locker numbers in this column is x+ (x+ 1) = 2x+ 1, which is odd.
Suppose that a column contains four lockers, numbered y, y+ 1, y+ 2, and y+ 3, for some
positive integer y.
Then the sum of the locker numbers in this column is

y + (y + 1) + (y + 2) + (y + 3) = 4y + 6 = 2(2y + 3)

which is even.
Since 123 is odd, then there must be two lockers in the column which has locker numbers
that add to 123.
If these locker numbers are x and x+ 1, then we need to solve 2x+ 1 = 123, which gives
2x = 122 or x = 61.
Therefore, the locker numbers in this column are 61 and 62.
(Note that since there are 20 lockers in each bank, then locker 61 is the first locker in the
fourth bank, so does start a column containing two lockers.)

(c) Since 538 is even, then from (b), it must be the sum of four locker numbers.
If these numbers are y, y + 1, y + 2, and y + 3, then we need to solve 4y + 6 = 538, which
gives 4y = 532 or y = 133.
Therefore, the locker numbers are 133, 134, 135, 136.
(Note that these four numbers do appear together in one column, since locker 140 ends
the seventh bank of lockers, so lockers 137, 138, 139, 140 form the last column, giving the
four lockers 133, 134, 135, 136 as the previous column.)

(d) Since 2013 is odd, then if it were the sum of locker numbers in a column, it would be the
sum of two locker numbers, as we saw in (b).
If these two locker numbers are x and x + 1, then 2x + 1 = 2013 or 2x = 2012, and so
x = 1006.
This would mean that the locker numbers were 1006 and 1007.
But the first locker number in each column is odd. This is because there is an even number
of lockers in each column and so the last locker number in each column is even, making
the first locker number in the next column odd.
Therefore, lockers 1006 and 1007 do not form a column of two lockers, so there is no
column whose locker numbers have a sum of 2013.

2. (a) Expanding and simplifying, we obtain

(a− 1)(6a2 − a− 1) = 6a3 − a2 − a− 6a2 + a+ 1 = 6a3 − 7a2 + 1

(b) To solve the equation 6 cos3 θ − 7 cos2 θ + 1 = 0, we first make the substitution a = cos θ.
The equation becomes 6a3 − 7a2 + 1 = 0.
From (a), factoring the left side gives the equation (a− 1)(6a2 − a− 1) = 0.
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We further factor 6a2 − a− 1 as (3a+ 1)(2a− 1).
This gives (a− 1)(3a+ 1)(2a− 1) = 0.
Thus, a = 1 or a = −1

3
or a = 1

2
.

This tells us that the solutions to the original equation are the values of θ in the range
−180◦ < θ < 180◦ with cos θ = 1 or cos θ = −1

3
or cos θ = 1

2
.

If −180◦ < θ < 180◦ and cos θ = 1, then θ = 0◦.
If −180◦ < θ < 180◦ and cos θ = −1

3
, then θ ≈ 109.5◦ or θ ≈ −109.5◦. (The positive value

for θ can be obtained using a calculator. The negative value can be obtained by thinking
about cos θ as an even function of θ or by picturing either the graph of y = cos θ or the
unit circle.)
If −180◦ < θ < 180◦ and cos θ = 1

2
, then θ = 60◦ or θ = −60◦.

Therefore, the solutions to the equation 6 cos3 θ− 7 cos2 θ+ 1 = 0, rounded to one decimal
place as appropriate, are 0◦, 60◦,−60◦, 109.5◦,−109.5◦.

(c) To solve the inequality 6 cos3 θ − 7 cos2 θ + 1 < 0, we factor the left side to obtain

(cos θ − 1)(3 cos θ + 1)(2 cos θ − 1) < 0

From (b), we know the values of θ at which the left side equals 0, so we examine the
intervals between these values and look at the sign (positive or negative) of each of the
factors in these intervals. We complete the final column of the table below by noting that
the product of three positive numbers is positive, the product of two positives with one
negative is negative, the product of one positive and two negatives is positive, and the
product of three negatives is negative.

Range of θ Range of cos θ cos θ − 1 3 cos θ + 1 2 cos θ − 1 Product

−180◦ < θ < −109.5◦ −1 < cos θ < −1
3

− − − −
−109.5◦ < θ < −60◦ −1

3
< cos θ < 1

2
− + − +

−60◦ < θ < 0◦ 1
2
< cos θ < 1 − + + −

0◦ < θ < 60◦ 1
2
< cos θ < 1 − + + −

60◦ < θ < 109.5◦ −1
3
< cos θ < 1

2
− + − +

109.5◦ < θ < 180◦ −1 < cos θ < −1
3

− − − −

From this analysis, the values of θ for which 6 cos3 θ − 7 cos2 θ + 1 < 0 are

−180◦ < θ < −109.5◦ and −60◦ < θ < 0◦ and 0◦ < θ < 60◦ and 109.5◦ < θ < 180◦

We could also have determined these intervals by looking only at positive values for θ and
then using the fact that cos θ is an even function to determine the negative values.

3. (a) A (2, 2)-sequence obeys the rules that if xi = A, then xi+2 = B and if xi = B, then
xi+2 = A.
Suppose that a (2, 2)-sequence has x1 = A.
Then x1+2 = x3 = B and x3+2 = x5 = A and x7 = B and x9 = A and so on.
Following this pattern, every odd-numbered term in the sequence is determined by x1 = A
and these terms alternate A,B,A,B, . . ..
Similarly, suppose that a (2, 2)-sequence has x1 = B.
Then x1+2 = x3 = A and x3+2 = x5 = B and x7 = A and x9 = B and so on.
Following this pattern, every odd-numbered term in the sequence is determined by x1 = B
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and these terms alternate B,A,B,A, . . ..
Note that the value of x1 does not affect any of the even-numbered terms.
Therefore, the value of x1 determines all of the odd-numbered terms in the sequence.
If a (2, 2)-sequence has x2 = A, then we will have x4 = B, x6 = A, x8 = B, and so on,
and if a (2, 2)-sequence has x2 = B, then we will have x4 = A, x6 = B, x8 = A, and so on.
Therefore, the value of x2 determines all of the even-numbered terms in the sequence.
There are 2 possible values for x1.
There are 2 possible values for x2.
Thus, there are 2× 2 = 4 possible (2, 2)-sequences.
These are

AABBAABBAA . . . ABBAABBAAB . . .

BAABBAABBA . . . BBAABBAABB . . .

(b) A (1, 2)-sequence obeys the rules that if xi = A, then xi+1 = B and if xi = B, then
xi+2 = A.
There are only two possibilities: x1 = A or x1 = B.

Suppose that a (1, 2)-sequence exists with x1 = A.
Then x1+1 = x2 = B and x2+2 = x4 = A and x4+1 = x5 = B.
So x1, x2, x3, x4, x5 is A,B, x3, A,B.
Consider x3. If x3 = B, then we would have x5 = A, which is not true. If x3 = A, then
we would have x4 = B, which is not true.
Since there is no possible value for x3, then a (1, 2)-sequence cannot have x1 = A.

Suppose that a (1, 2)-sequence exists with x1 = B.
Then x3 = A and x4 = B.
So x1, x2, x3, x4 is B, x2, A,B.
Consider x2. If x2 = B, then we would have x4 = A, which is not true. If x2 = A, then
we would have x3 = B, which is not true.
Since there is no possible value for x2, then a (1, 2)-sequence cannot have x1 = B.

Therefore, a (1, 2)-sequence cannot have x1 = A or x1 = B, so no (1, 2)-sequence exists.

(c) Suppose that x1, x2, x3, . . . is an (m,n)-sequence.
Consider the sequence y1, y2, y3, . . . defined by

y1 = y2 = · · · = yr = x1, yr+1 = yr+2 = · · · = y2r = x2, . . .

In general, we define y(q−1)r+1 = y(q−1)r+2 = · · · = yqr = xq for each positive integer q.
In other words, the first r terms of the sequence equal x1, the next r terms equal x2, the
next r terms equal x3, and so on, with the qth group of r terms equal to xq:

r times︷ ︸︸ ︷
x1, x1, . . . , x1,,

r times︷ ︸︸ ︷
x2, x2, . . . , x2, . . . ,

r times︷ ︸︸ ︷
xq, xq, . . . , xq,, . . .

For example, consider the (2, 2)-sequence ABBAABBAABBA . . ..
With r = 3, this process would form the sequence

AAABBBBBBAAAAAABBBBBBAAAAAABBBBBBAAA . . .

which we claim is a (6, 6)-sequence.
We show that in general the sequence y1, y2, y3, . . . is an (rm, rn)-sequence.
Consider a term yi with (q − 1)r + 1 ≤ i ≤ qr.
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Then yi = xq.
(In the given example, consider the term y11 = A. Note that 3(3) + 1 ≤ 11 ≤ 4(3), so
y11 = x4.)
We must show that if yi = A, then yi+rm = B and if yi = B, then yi+rn = A.
(Since y11 = A, we want to show that y11+6 = B.)
If yi = xq = A, then xq+m = B since the x’s form an (m,n)-sequence.
(Since x4 = A, then x6 = B.)
Consider yi+rm. Since (q − 1)r + 1 ≤ i ≤ qr, then (q − 1)r + 1 + rm ≤ i+ rm ≤ qr + rm
or (q +m− 1)r + 1 ≤ i+ rm ≤ (q +m)r.
By definition, yi+rm = xq+m. Since xq+m = B, then yi+rm = B as required.
(We are looking at y17. Since 5(3) + 1 ≤ 17 ≤ 6(3), then y17 = x6 = B, as required.)
If yi = xq = B, then xq+n = A since the x’s form an (m,n)-sequence.
Consider yi+rn. Since (q − 1)r + 1 ≤ i ≤ qr, then (q − 1)r + 1 + rn ≤ i+ rn ≤ qr + rn or
(q + n− 1)r + 1 ≤ i+ rn ≤ (q + n)r.
By definition, yi+rn = xq+n. Since xq+n = A, then yi+rn = A as required.
Therefore, the sequence y1, y2, y3, . . . is an (rm, rn)-sequence.
Thus, if an (m,n)-sequence exists, then an (rm, rn)-sequence exists.

(d) Any positive integer m can be written in a unique way in the form m = 2pc where p is a
non-negative integer and c is an odd integer. (To see this, we factor 2s out of m until the
quotient is odd; this quotient is c and the number of 2s factored out is p.)
We write m = 2pc and n = 2qd where p and q are non-negative integers and c and d are
odd positive integers.
We prove that an (m,n)-sequence exists if and only if m and n contain exactly the same
number of factor of 2s (that is, if and only if p = q).
We proceed through a number of steps.

Step 1: A (c, d)-sequence exists whenever c and d are both odd positive integers
Consider the sequence x1, x2, x3, . . . in which every odd-numbered term is A and every
even-numbered term is B.
That is, the sequence is ABABAB . . ..
We prove that this sequence is a (c, d)-sequence.
Suppose that xi = A. Then i must be odd, since only odd-numbered terms equal A.
Since i is odd and c is odd, then i+ c is even, and so xi+c = B.
Thus, if xi = A, then xi+c = B.
Suppose that xi = B. Then i must be even, since only even-numbered terms equal B.
Since i is even and d is odd, then i+ d is odd, and so xi+d = A.
Thus, if xi = B, then xi+d = A.
Therefore, ABABAB . . . is a (c, d)-sequence, so a (c, d)-sequence exists whenever c and d
are both odd positive integers.

Step 2: An (m,n)-sequence exists if m = 2pc and n = 2pd
Here, c and d are odd positive integers and p is a non-negative integer.
By Step 1, a (c, d)-sequence exists.
By (c) with r = 2p, this implies that a (2pc, 2pd)-sequence exists, so an (m,n)-sequence
exists.

We have shown that if m and n contain the same number of factors of 2, then an (m,n)-
sequence exists. We must now show that if m and n do not contain the same number of
factors of 2, then an (m,n)-sequence does not exist.
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Step 3: If an (rm, rn)-sequence exists, then an (m,n)-sequence exists
Here, r,m, n are positive integers.
Suppose that y1, y2, y3, . . . is an (rm, rn)-sequence.
Consider the sequence x1, x2, x3, . . . where xi = yri. (This is the sequence yr, y2r, y3r, . . ..)
We show that this new sequence is an (m,n)-sequence.
Suppose that xi = A. Then yri = A and so yri+rm = B.
But ri+ rm = r(i+m) and so xi+m = yri+rm = B.
Suppose that xi = B. Then yri = B and so yri+rn = A.
But ri+ rn = r(i+ n) and so xi+n = yri+rn = A.
Therefore, x1, x2, x3, . . . is an (m,n)-sequence as required. Thus, if an (rm, rn)-sequence
exists, then an (m,n)-sequence exists.

Step 4: If an (m,n)-sequence exists, then an (n,m)-sequence exists
Here, m and n are positive integers.
Suppose that x1, x2, x3, . . . is an (m,n)-sequence, and consider the sequence y1, y2, y3, . . .
defined by yi = B if xi = A and yi = A if xi = B.
We show that y1, y2, y3, . . . is an (n,m)-sequence.
If yi = A, then xi = B and so xi+n = A which means that yi+n = B.
Thus, whenever yi = A, we have yi+n = B.
If yi = B, then xi = A and so xi+m = B which means that yi+m = A.
Thus, whenever yi = B, we have yi+m = A.
This means that y1, y2, y3, . . . is an (n,m)-sequence.
Therefore, whenever an (m,n)-sequence exists, then an (n,m)-sequence exists.
This also implies that if an (n,m)-sequence does not exist, then an (m,n)-sequence does
not exist.

Step 5: Supplementing definition of (m,n)-sequence
Suppose that x1, x2, x3, . . . is an (m,n)-sequence.
We know that if xi = A, then xi+m = B and if xi = B, then xi+n = A.
Suppose that xi = A. Then xi+m = B and further xi+m+n = A.
What can we say about xi+n? If xi+n = A, then we would have xi+m+n = B, which isn’t
the case.
Thus, if xi = A, then xi+n = B.
Similarly, we can show that if xi = B, then xi+m = A.
Therefore, in an (m,n)-sequence, we have that if xi = A, then xi+m = B and xi+n = B
and if xi = B, then xi+n = A and xi+m = A.

Step 6: If m is odd and n is even, an (m,n)-sequence does not exist
Suppose that x1, x2, x3, . . . is an (m,n)-sequence.
Suppose that x1 = A.
Consider the term x1+mn.
First, we approach x1+mn by considering every mth term starting at x1.
From the definition and Step 5, we have x1 = A, x1+m = B, x1+2m = A, x1+3m = B, and
so on.
Since n is even, then we move an even number of steps from x1 to x1+mn in this way, and
so x1+mn = A.
Next, we approach x1+mn by considering every nth term starting at x1.
From the definition and Step 5, we have x1 = A, x1+n = B, x1+2n = A, x1+3n = B, and
so on.
Since m is odd, then we move an odd number of steps from x1 to x1+mn in this way, and
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so x1+mn = B.
This is a contradiction, and so we cannot have x1 = A.
In a similar way, we can show that if x1 = B, then the term x1+mn leads to a contradiction.
Therefore, if m is odd and n is even, an (m,n)-sequence does not exist.
By Step 4, this also implies that if m is even and n is odd, an (m,n)-sequence does not
exist.

Step 7: m and n do not contain the same number of factors of 2
We show that no (m,n)-sequence exists.
Suppose that m = 2pc and n = 2qd with p and q non-negative integers p 6= q and c and d
odd positive integers.
Suppose without loss of generality that p < q.
By Step 3, if a (2pc, 2qd)-sequence exists, then a (c, 2q−pd)-sequence exists (using r = 2p).
But c is odd and 2q−pd is even, so by Step 6 such a sequence doesn’t exist and so an
(m,n)-sequence does not exist.
Therefore, if m and n do not contain the same number of 2s, then no (m,n)-sequence
exists.

In conclusion, an (m,n)-sequence exists if and only if m and n contain the same number
of factors of 2.


