The CENTRE for EDUCATION in MATHEMATICS and COMPUTING www.cemc.uwaterloo.ca

2012 Euclid Contest

Wednesday, April 11, 2012
(in North America and South America)

Thursday, April 12, 2012
(outside of North America and South America)

Solutions

1. (a) Since John buys 10 bags of apples, each of which contains 20 apples, then he buys a total of $10 \times 20=200$ apples.
Since he eats 8 apples a day, then it takes him $200 \div 8=25$ days to eat these apples.
(b) Evaluating,

$$
\begin{aligned}
\sin \left(0^{\circ}\right) & +\sin \left(60^{\circ}\right)+\sin \left(120^{\circ}\right)+\sin \left(180^{\circ}\right)+\sin \left(240^{\circ}\right)+\sin \left(300^{\circ}\right)+\sin \left(360^{\circ}\right) \\
& =0+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+0+\left(-\frac{\sqrt{3}}{2}\right)+\left(-\frac{\sqrt{3}}{2}\right)+0 \\
& =0
\end{aligned}
$$

Alternatively, we could notice that $\sin \left(60^{\circ}\right)=-\sin \left(300^{\circ}\right)$ and $\sin \left(120^{\circ}\right)=-\sin \left(240^{\circ}\right)$ and $\sin \left(0^{\circ}\right)=\sin \left(180^{\circ}\right)=\sin \left(360^{\circ}\right)=0$, so the sum is 0 .
(c) Since the set of integers has a sum of 420 and an average of 60 , then there are $420 \div 60=7$ integers in the set.
Since one integer is 120 , then the remaining 6 integers have a sum of $420-120=300$ and so have an average of $300 \div 6=50$.
2. (a) Since $a x+a y=4$, then $a(x+y)=4$.

Since $x+y=12$, then $12 a=4$ or $a=\frac{4}{12}=\frac{1}{3}$.
(b) Since the two lines are parallel, then their slopes are equal.

We re-write the given equations in the form " $y=m x+b$ ".
The first equation becomes $6 y=-4 x+5$ or $y=-\frac{4}{6} x+\frac{5}{6}$ or $y=-\frac{2}{3} x+\frac{5}{6}$.
Since the first line is not vertical, then the second line is not vertical, and so $k \neq 0$.
The second equation becomes $k y=-6 x+3$ or $y=-\frac{6}{k} x+\frac{3}{k}$.
Therefore, $-\frac{2}{3}=-\frac{6}{k}$ and so $\frac{k}{6}=\frac{3}{2}$ or $k=6 \times \frac{3}{2}=9$.
(c) Adding the two equations, we obtain $x+x^{2}=2$ or $x^{2}+x-2=0$.

Factoring, we obtain $(x+2)(x-1)=0$, and so $x=-2$ or $x=1$.
From the first equation, $y=-x$. If $x=-2$, then $y=2$ and if $x=1$, then $y=-1$.
Therefore, the solutions are $(x, y)=(-2,2)$ and $(x, y)=(1,-1)$.
(We can check that each of these solutions satisfies both equations.)
3. (a) Since the 200 g solution is 25% salt by mass, then $\frac{1}{4}$ of the mass (or 50 g) is salt and the rest $(150 \mathrm{~g})$ is water.
When water is added, the mass of salt does not change. Therefore, the 50 g of salt initially in the solution becomes 10% (or $\frac{1}{10}$) of the final solution by mass.
Therefore, the total mass of the final solution is $10 \times 50=500 \mathrm{~g}$.
Thus, the mass of water added is $500-200=300 \mathrm{~g}$.
(b) We are told that $F=\frac{9}{5} C+32$.

From the given information $f=2 C+30$.
We determine an expression for the error in terms of C by first determining when $f<F$. The inequality $f<F$ is equivalent to $2 C+30<\frac{9}{5} C+32$ which is equivalent to $\frac{1}{5} C<2$ which is equivalent to $C<10$.
Therefore, $f<F$ precisely when $C<10$.
Thus, for $-20 \leq C<10$, the error equals $F-f=\left(\frac{9}{5} C+32\right)-(2 C+30)=2-\frac{1}{5} C$.
Also, for $10 \leq C \leq 35$, the error equals $f-F=(2 C+30)-\left(\frac{9}{5} C+32\right)=\frac{1}{5} C-2$.
When $-20 \leq C<10$, the error in terms of C is $2-\frac{1}{5} C$ which is linear with negative slope, so is decreasing as C increases. Thus, the maximum value of error in this range for C occurs
when C is smallest, that is, when $C=-20$. This gives an error of $2-\frac{1}{5}(-20)=2+4=6$. When $10 \leq C \leq 35$, the error in terms of C is $\frac{1}{5} C-2$ which is linear with positive slope, so is increasing as C increases. Thus, the maximum value of error in this range for C occurs when C is largest, that is, when $C=35$. This gives an error of $\frac{1}{5}(35)-2=7-2=5$.
Having considered the two possible ranges for C, the maximum possible error that Gordie would make is 6 .
4. (a) Solution 1

Since the x-intercepts of the parabola with equation $y=2(x-3)(x-5)$ are $x=3$ and $x=5$, then its axis of symmetry is at $x=\frac{1}{2}(3+5)=4$.
If a horizontal line intersects the parabola at two points, then these points are symmetric across the axis of symmetry.
Since the line $y=k$ intersects the parabola at two points A and B with $A B=6$, then each of A and B must be 3 units from the axis of symmetry.
Therefore, the x-coordinates of A and B are $4-3=1$ and $4+3=7$.
Thus, the coordinates of A and B, in some order, are $(1, k)$ and $(7, k)$.
Substituting $(1, k)$ into the equation of the parabola gives $k=2(1-3)(1-5)=16$.
(Substituting $(7, k)$ would give the same value of k.)

Solution 2

Let x_{A} be the x-coordinate of A and x_{B} be the x-coordinate of B. We may assume that A is to the left of B; that is, we assume that $x_{A}<x_{B}$. Since $A B$ is horizontal and $A B=6$, then $x_{B}-x_{A}=6$.
Since A and B are the points of intersection between the line with equation $y=k$ and the parabola with equation $y=2(x-3)(x-5)$, then we can solve for x_{A} and x_{B} by equating values of y to obtain the equation $k=2(x-3)(x-5)$, which is equivalent to $k=2\left(x^{2}-8 x+15\right)$ or $2 x^{2}-16 x+(30-k)=0$.
Using the quadratic formula, we obtain

$$
x_{A}, x_{B}=\frac{16 \pm \sqrt{(-16)^{2}-4(2)(30-k)}}{2(2)}
$$

Thus, $x_{A}=\frac{16-\sqrt{16^{2}-4(2)(30-k)}}{2(2)}$ and $x_{B}=\frac{16+\sqrt{16^{2}-4(2)(30-k)}}{2(2)}$.
Since $x_{B}-x_{A}=6$, then

$$
\begin{aligned}
\frac{16+\sqrt{16^{2}-4(2)(30-k)}}{2(2)}-\frac{16-\sqrt{16^{2}-4(2)(30-k)}}{2(2)} & =6 \\
\frac{2 \sqrt{16^{2}-4(2)(30-k)}}{2(2)} & =6 \\
\sqrt{256-(240-8 k)} & =12 \\
\sqrt{16+8 k} & =12 \\
16+8 k & =144 \\
8 k & =128 \\
k & =16
\end{aligned}
$$

Therefore, $k=16$.
We can double check that the line with equation $y=16$ intersects the parabola with equation $y=2(x-3)(x-5)$ at the points $(1,16)$ and $(7,16)$, which are a distance 6 apart.
(b) Let $n=(3 a+6 a+9 a+12 a+15 a)+(6 b+12 b+18 b+24 b+30 b)$.

First, we simplify the given expression for n to obtain

$$
n=(3 a+6 a+9 a+12 a+15 a)+(6 b+12 b+18 b+24 b+30 b)=45 a+90 b
$$

We then factor the right side to obtain $n=45(a+2 b)=3^{2} 5^{1}(a+2 b)$.
If $a+2 b=5$, then $n=3^{2} 5^{2}=(3 \times 5)^{2}$, which is a perfect square.
Two pairs of positive integers (a, b) that satisfy $a+2 b=5$ are $(a, b)=(3,1)$ and $(a, b)=(1,2)$.
Another value of $a+2 b$ for which n is a perfect square is $a+2 b=20$, since here $n=3^{2} 5^{1} 20=3^{2} 5^{1} 2^{2} 5^{1}=3^{2} 2^{2} 5^{2}=(3 \times 2 \times 5)^{2}$.
A pair of positive integers (a, b) that satisfies $a+2 b=20$ is $(18,1)$.
Therefore, three pairs of positive integers (a, b) with the required property are $(3,1),(1,2),(18,1)$.
(There are infinitely many other pairs with this property.)
5. (a) Solution 1

First, we calculate the side lengths of $\triangle A B C$:

$$
\begin{aligned}
A B & =\sqrt{(0-3)^{2}+(5-0)^{2}}=\sqrt{34} \\
B C & =\sqrt{(3-8)^{2}+(0-3)^{2}}=\sqrt{34} \\
A C & =\sqrt{(0-8)^{2}+(5-3)^{2}}=\sqrt{68}
\end{aligned}
$$

Since $A B=B C$ and $A C=\sqrt{2} A B=\sqrt{2} B C$, then $\triangle A B C$ is an isosceles right-angled triangle, with the
 right angle at B.
Therefore, $\angle A C B=45^{\circ}$.
Solution 2
As in Solution 1, $A B=B C=\sqrt{34}$.
Line segment $A B$ has slope $\frac{5-0}{0-3}=-\frac{5}{3}$.
Line segment $B C$ has slope $\frac{0-3}{3-8}=\frac{3}{5}$.
Since the product of these two slopes is -1 , then $A B$ and $B C$ are perpendicular.
Therefore, $\triangle A B C$ is right-angled at B.
Since $A B=B C$, then $\triangle A B C$ is an isosceles right-angled triangle, so $\angle A C B=45^{\circ}$.

Solution 3

As in Solution 1, $A B=B C=\sqrt{34}$ and $A C=\sqrt{68}$.
Using the cosine law,

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2}-2(A C)(B C) \cos (\angle A C B) \\
34 & =68+34-2(\sqrt{68})(\sqrt{34}) \cos (\angle A C B) \\
0 & =68-2(\sqrt{2} \sqrt{34})(\sqrt{34}) \cos (\angle A C B) \\
0 & =68-68 \sqrt{2} \cos (\angle A C B) \\
68 \sqrt{2} \cos (\angle A C B) & =68 \\
\cos (\angle A C B) & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since $\cos (\angle A C B)=\frac{1}{\sqrt{2}}$ and $0^{\circ}<\angle A C B<180^{\circ}$, then $\angle A C B=45^{\circ}$.
(b) Draw perpendiculars from P and Q to X and Y, respectively, on $S R$.

Since $P Q$ is parallel to $S R$ (because $P Q R S$ is a trapezoid) and $P X$ and $Q Y$ are perpendicular to $S R$, then $P Q Y X$ is a rectangle.
Thus, $X Y=P Q=7$ and $P X=Q Y$.
Since $\triangle P X S$ and $\triangle Q Y R$ are right-angled with $P S=Q R$ and $P X=Q Y$, then these triangles are congruent, and so $S X=Y R$.
Since $X Y=7$ and $S R=15$, then $S X+7+Y R=15$ or $2 \times S X=8$ and so $S X=4$. By the Pythagorean Theorem in $\triangle P X S$,

$$
P X^{2}=P S^{2}-S X^{2}=8^{2}-4^{2}=64-16=48
$$

Now $P R$ is the hypotenuse of right-angled $\triangle P X R$.
Since $P R>0$, then by the Pythagorean Theorem,

$$
P R=\sqrt{P X^{2}+X R^{2}}=\sqrt{48+(7+4)^{2}}=\sqrt{48+11^{2}}=\sqrt{48+121}=\sqrt{169}=13
$$

Therefore, $P R=13$.
6. (a) Solution 1

There are two possibilities: either each player wins three games or one player wins more games than the other.
Since the probability that each player wins three games is $\frac{5}{16}$, then the probability that any one player wins more games than the other is $1-\frac{5}{16}=\frac{11}{16}$.
Since each of Blaise and Pierre is equally likely to win any given game, then each must be equally likely to win more games than the other.
Therefore, the probability that Blaise wins more games than Pierre is $\frac{1}{2} \times \frac{11}{16}=\frac{11}{32}$.

Solution 2

We consider the results of the 6 games as a sequence of 6 Bs or Ps, with each letter a B if Blaise wins the corresponding game or P if Pierre wins.
Since the two players are equally skilled, then the probability that each wins a given game is $\frac{1}{2}$. This means that the probability of each letter being a B is $\frac{1}{2}$ and the probability of each letter being a P is also $\frac{1}{2}$.
Since each sequence consists of 6 letters, then the probability of a particular sequence occurring is $\left(\frac{1}{2}\right)^{6}=\frac{1}{64}$, because each of the letters is specified.
Since they play 6 games in total, then the probability that Blaise wins more games than Pierre is the sum of the probabilities that Blaise wins 4 games, that Blaise wins 5 games, and that Blaise wins 6 games.
If Blaise wins 6 games, then the sequence consists of 6 Bs . The probability of this is $\frac{1}{64}$, since there is only one way to arrange 6 Bs .
If Blaise wins 5 games, then the sequence consists of 5 Bs and 1 P . The probability of this is $6 \times \frac{1}{64}=\frac{6}{64}$, since there are 6 possible positions in the list for the 1 P (eg. PBBBBB ,
$\mathrm{BPBBBB}, \mathrm{BBPBBB}, \mathrm{BBBPBB}, \mathrm{BBBBPB}, \mathrm{BBBBBP})$.
The probability that Blaise wins 4 games is $\binom{6}{2} \times \frac{1}{64}=\frac{15}{64}$, since there are $\binom{6}{2}=15$ ways for 4 Bs and 2 Ps to be arranged.
Therefore, the probability that Blaise wins more games than Pierre is $\frac{1}{64}+\frac{6}{64}+\frac{15}{64}=\frac{22}{64}=\frac{11}{32}$.
(b) Using exponent rules and arithmetic, we manipulate the given equation:

$$
\begin{aligned}
3^{x+2}+2^{x+2}+2^{x} & =2^{x+5}+3^{x} \\
3^{x} 3^{2}+2^{x} 2^{2}+2^{x} & =2^{x} 2^{5}+3^{x} \\
9\left(3^{x}\right)+4\left(2^{x}\right)+2^{x} & =32\left(2^{x}\right)+3^{x} \\
8\left(3^{x}\right) & =27\left(2^{x}\right) \\
\frac{3^{x}}{2^{x}} & =\frac{27}{8} \\
\left(\frac{3}{2}\right)^{x} & =\left(\frac{3}{2}\right)^{3}
\end{aligned}
$$

Since the two expressions are equal and the bases are equal, then the exponents must be equal, so $x=3$.
7. (a) Since $A B=A C$, then $\triangle A B C$ is isosceles and $\angle A B C=\angle A C B$. Note that $\angle B A C=\theta$.

The angles in $\triangle A B C$ add to 180°, so $\angle A B C+\angle A C B+\angle B A C=180^{\circ}$.
Thus, $2 \angle A C B+\theta=180^{\circ}$ or $\angle A B C=\angle A C B=\frac{1}{2}\left(180^{\circ}-\theta\right)=90^{\circ}-\frac{1}{2} \theta$.
Now $\triangle B C D$ is isosceles as well with $B C=B D$ and so $\angle C D B=\angle D C B=90^{\circ}-\frac{1}{2} \theta$.
Since the angles in $\triangle B C D$ add to 180°, then

$$
\angle C B D=180^{\circ}-\angle D C B-\angle C D B=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \theta\right)-\left(90^{\circ}-\frac{1}{2} \theta\right)=\theta
$$

Now $\angle E B D=\angle A B C-\angle D B C=\left(90^{\circ}-\frac{1}{2} \theta\right)-\theta=90^{\circ}-\frac{3}{2} \theta$.
Since $B E=E D$, then $\angle E D B=\angle E B D=90^{\circ}-\frac{3}{2} \theta$.
Therefore, $\angle B E D=180^{\circ}-\angle E B D-\angle E D B=180^{\circ}-\left(90^{\circ}-\frac{3}{2} \theta\right)-\left(90^{\circ}-\frac{3}{2} \theta\right)=3 \theta$.
(b) Let O be the centre of the ferris wheel and B the lowest point on the wheel.

Since the radius of the ferris wheel is 9 m (half of the diameter of 18 m) and B is 1 m above the ground, then O is $9+1=10 \mathrm{~m}$ above the ground.
Let $\angle T O P=\theta$.

Since the ferris wheel rotates at a constant speed, then in 8 seconds, the angle through which the wheel rotates is twice the angle through which it rotates in 4 seconds. In other words, $\angle T O Q=2 \theta$.
Draw a perpendicular from P to R on $T B$ and from Q to G on $T B$.
Since P is 16 m above the ground and O is 10 m above the ground, then $O R=6 \mathrm{~m}$.
Since $O P$ is a radius of the circle, then $O P=9 \mathrm{~m}$.
Looking at right-angled $\triangle O R P$, we see that $\cos \theta=\frac{O R}{O P}=\frac{6}{9}=\frac{2}{3}$.
Since $\cos \theta=\frac{2}{3}<\frac{1}{\sqrt{2}}=\cos \left(45^{\circ}\right)$, then $\theta>45^{\circ}$.
This means that $2 \theta>90^{\circ}$, which means that Q is below the horizontal diameter through O and so G is below O.
Since $\angle T O Q=2 \theta$, then $\angle Q O G=180^{\circ}-2 \theta$.
Kolapo's height above the ground at Q equals 1 m plus the length of $B G$.
Now $B G=O B-O G$. We know that $O B=9 \mathrm{~m}$.
Also, considering right-angled $\triangle Q O G$, we have

$$
O G=O Q \cos (\angle Q O G)=9 \cos \left(180^{\circ}-2 \theta\right)=-9 \cos (2 \theta)=-9\left(2 \cos ^{2} \theta-1\right)
$$

Since $\cos \theta=\frac{2}{3}$, then $O G=-9\left(2\left(\frac{2}{3}\right)^{2}-1\right)=-9\left(\frac{8}{9}-1\right)=1 \mathrm{~m}$.
Therefore, $B G=9-1=8 \mathrm{~m}$ and so Q is $1+8=9 \mathrm{~m}$ above the ground.
8. (a) Solution 1

The hour hand and minute hand both turn at constant rates. Since the hour hand moves $\frac{1}{12}$ of the way around the clock in 1 hour and the minute hand moves all of the way around the clock in 1 hour, then the minute hand turns 12 times as quickly as the hour hand.

Suppose also that the hour hand moves through an angle of x° between Before and After. Therefore, the minute hand moves through an angle of $\left(360^{\circ}-x^{\circ}\right)$ between Before and After, since these two angles add to 360°.

Since the minute hand moves 12 times as quickly as the hour hand, then $\frac{360^{\circ}-x^{\circ}}{x^{\circ}}=12$ or $360-x=12 x$ and so $13 x=360$, or $x=\frac{360}{13}$.
In one hour, the hour hand moves through $\frac{1}{12} \times 360^{\circ}=30^{\circ}$.
Since the hour hand is moving for t hours, then we have $30^{\circ} t=\left(\frac{360}{13}\right)^{\circ}$ and so $t=\frac{360}{30(13)}=\frac{12}{13}$.
Solution 2
Suppose that Jimmy starts painting x hours after 9:00 a.m. and finishes painting y hours after 10:00 a.m., where $0<x<1$ and $0<y<1$.
Since t is the amount of time in hours that he spends painting, then $t=(1-x)+y$, because he paints for $(1-x)$ hours until 10:00 a.m., and then for y hours until his finishing time. The hour hand and minute hand both turn at constant rates.
The minute hand turns 360° in one hour and the hour hand turns $\frac{1}{12} \times 360^{\circ}=30^{\circ}$ in one hour.
Thus, in x hours, where $0<x<1$, the minute hand turns $(360 x)^{\circ}$ and the hour hand turns $(30 x)^{\circ}$.
In the Before picture, the minute hand is $(360 x)^{\circ}$ clockwise from the 12 o'clock position.
In the After picture, the minute hand is $(360 y)^{\circ}$ clockwise from the $12 o^{\prime}$ clock position.
The 9 is $9 \times 30^{\circ}=270^{\circ}$ clockwise from the 12 o'clock position and the 10 is $10 \times 30^{\circ}=300^{\circ}$ clockwise from the 12 o'clock position.
Therefore, in the Before picture, the hour hand is $270^{\circ}+(30 x)^{\circ}$ clockwise from the 12 o^{\prime} clock position, and in the After picture, the hour hand is $300^{\circ}+(30 y)^{\circ}$ clockwise from the 12 o'clock position.
Because the hour and minute hands have switched places from the Before to the After positions, then we can equate the corresponding positions to obtain $(360 x)^{\circ}=300^{\circ}+(30 y)^{\circ}$ $($ or $360 x=300+30 y)$ and $(360 y)^{\circ}=270^{\circ}+(30 x)^{\circ}($ or $360 y=270+30 x)$.
Dividing both equations by 30 , we obtain $12 x=10+y$ and $12 y=9+x$.
Subtracting the second equation from the first, we obtain $12 x-12 y=10+y-9-x$ or $-1=13 y-13 x$.
Therefore, $y-x=-\frac{1}{13}$ and so $t=(1-x)+y=1+y-x=1-\frac{1}{13}=\frac{12}{13}$.
(b) We manipulate the given equation into a sequence of equivalent equations:

$$
\begin{array}{rll}
\log _{5 x+9}\left(x^{2}+6 x+9\right)+\log _{x+3}\left(5 x^{2}+24 x+27\right) & =4 \\
\frac{\log \left(x^{2}+6 x+9\right)}{\log (5 x+9)}+\frac{\log \left(5 x^{2}+24 x+27\right)}{\log (x+3)} & =4 & \\
\frac{\log \left((x+3)^{2}\right)}{\log (5 x+9)}+\frac{\log ((5 x+9)(x+3))}{\log (x+3)} & =4 & \text { (fasing the "change of base" formula) } \\
\frac{2 \log (x+3)}{\log (5 x+9)}+\frac{\log (5 x+9)+\log (x+3)}{\log (x+3)} & =4 & \text { (using logarithm rules) } \\
2\left(\frac{\log (x+3)}{\log (5 x+9)}\right)+\frac{\log (5 x+9)}{\log (x+3)}+\frac{\log (x+3)}{\log (x+3)} & =4 & \text { (rearranging fractions) }
\end{array}
$$

Making the substitution $t=\frac{\log (x+3)}{\log (5 x+9)}$, we obtain successively

$$
\begin{aligned}
2 t+\frac{1}{t}+1 & =4 \\
2 t^{2}+1+t & =4 t \\
2 t^{2}-3 t+1 & =0 \\
(2 t-1)(t-1) & =0
\end{aligned}
$$

Therefore, $t=1$ or $t=\frac{1}{2}$.
If $\frac{\log (x+3)}{\log (5 x+9)}=1$, then $\log (x+3)=\log (5 x+9)$ or $x+3=5 x+9$, which gives $4 x=-6$ or $x=-\frac{3}{2}$.
If $\frac{\log (x+3)}{\log (5 x+9)}=\frac{1}{2}$, then $2 \log (x+3)=\log (5 x+9)$ or $\log \left((x+3)^{2}\right)=\log (5 x+9)$ or $(x+3)^{2}=5 x+9$.
Here, $x^{2}+6 x+9=5 x+9$ or $x^{2}+x=0$ or $x(x+1)=0$, and so $x=0$ or $x=-1$.
Therefore, there are three possible values for $x: x=0, x=-1$ and $x=-\frac{3}{2}$.
We should check each of these in the original equation.
If $x=0$, the left side of the original equation is $\log _{9} 9+\log _{3} 27=1+3=4$.
If $x=-1$, the left side of the original equation is $\log _{4} 4+\log _{2} 8=1+3=4$.
If $x=-\frac{3}{2}$, the left side of the original equation is $\log _{3 / 2}(9 / 4)+\log _{3 / 2}(9 / 4)=2+2=4$.
Therefore, the solutions are $x=0,-1,-\frac{3}{2}$.
9. (a) Suppose that the auditorium with these properties has r rows and c columns of chairs.

Then there are $r c$ chairs in total.
Each chair is empty, is occupied by a boy, or is occupied by a girl.
Since there are 14 boys in each row, then there are $14 r$ chairs occupied by boys.
Since there are 10 girls in each column, then there are $10 c$ chairs occupied by girls.
Since there are exactly 3 empty chairs, then the total number of chairs can also be written as $14 r+10 c+3$.
Therefore, $r c=14 r+10 c+3$.
We proceed to find all pairs of positive integers r and c that satisfy this equation. We note that since there are 14 boys in each row, then there must be at least 14 columns (that is, $c \geq 14)$ and since there are 10 girls in each column, then there must be at least 10 rows (that is, $r \geq 10$).
Manipulating the equation,

$$
\begin{aligned}
r c & =14 r+10 c+3 \\
r c-14 r & =10 c+3 \\
r(c-14) & =10 c+3 \\
r & =\frac{10 c+3}{c-14} \\
r & =\frac{10 c-140+143}{c-14} \\
r & =\frac{10 c-140}{c-14}+\frac{143}{c-14} \\
r & =10+\frac{143}{c-14}
\end{aligned}
$$

Since r is an integer, then $10+\frac{143}{c-14}$ is an integer, so $\frac{143}{c-14}$ must be an integer.
Therefore, $c-14$ is a divisor of 143 . Since $c \geq 14$, then $c-14 \geq 0$, so $c-14$ is a positive divisor of 143 .
Since $143=11 \times 13$, then its positive divisors are $1,11,13,143$.
We make a table of the possible values of $c-14$ along with the resulting values of c, r (calculated using $r=10+\frac{143}{c-14}$) and $r c$:

$c-14$	c	r	$r c$
1	15	153	2295
11	25	23	575
13	27	21	567
143	157	11	1727

Therefore, the four possible values for $r c$ are $567,575,1727,2295$. That is, the smallest possible number of chairs in the auditorium is 567 .
(Can you create a grid with 27 columns and 21 rows that has the required properties?)

(b) Solution 1

We use the notation $|P M Q N|$ to represent the area of quadrilateral $|P M Q N|,|\triangle A P D|$ to represent the area of $\triangle A P D$, and so on.
We want to show that $|P M Q N|=|\triangle A P D|+|\triangle B Q C|$.
This is equivalent to showing

$$
|P M Q N|+|\triangle D P N|+|\triangle C Q N|=|\triangle A P D|+|\triangle D P N|+|\triangle B Q C|+|\triangle C Q N|
$$

which is equivalent to showing

$$
|\triangle D M C|=|\triangle D A N|+|\triangle C B N|
$$

since combining quadrilateral $P M Q N$ with $\triangle D P N$ and $\triangle C Q N$ gives $\triangle D M C$, combining $\triangle A P D$ with $\triangle D P N$ gives $\triangle D A N$, and combining $\triangle B Q C$ with $\triangle C Q N$ gives $\triangle C B N$. Suppose that $D C$ has length x and $D N$ has length $t x$ for some t with $0<t<1$. Then $N C=D C-D N=x-t x=(1-t) x$.
Suppose also that the height of A above $D C$ is a, the height of B above $D C$ is b and the height of M above $D C$ is m.

Figure 1
Then $|\triangle D A N|=\frac{1}{2}(t x)(a)$ and $|\triangle C B N|=\frac{1}{2}((1-t) x) b$ so

$$
|\triangle D A N|+|\triangle C B N|=\frac{1}{2}(t x a+(1-t) x b)=\frac{1}{2} x(t a+(1-t) b)
$$

Also, $|\triangle D M C|=\frac{1}{2} x m$.
In order to prove that $|\triangle D M C|=|\triangle D A N|+|\triangle C B N|$, we need to show that $\frac{1}{2} x m$ equals
$\frac{1}{2} x(t a+(1-t) b)$ which is equivalent to showing that m is equal to $t a+(1-t) b$.
In Figure 2, we draw a horizontal line from A to $B G$, meeting $M F$ at R and $B G$ at S.
Since $M F$ and $B G$ are vertical and $A R S$ is horizontal, then these line segments are perpendicular.
Since $A E=a, M F=m$ and $B G=b$, then $M R=m-a$ and $B S=b-a$.

Figure 2
Now $\triangle A R M$ is similar to $\triangle A S B$, since each is right-angled and they share a common angle at A.
Therefore, $\frac{M R}{B S}=\frac{A M}{A B}=\frac{N C}{D C}$.
Since $M R=m-a$ and $B S=b-a$, then $\frac{M R}{B S}=\frac{m-a}{b-a}$.
Since $\frac{A M}{A B}=\frac{N C}{D C}$, then $\frac{M R}{B S}=\frac{(1-t) x}{x}=1-t$.
Comparing these two expressions, we obtain $\frac{m-a}{b-a}=(1-t)$ or $m-a=(b-a)(1-t)$ or $m=a+b(1-t)+(t-1) a=t a+(1-t) b$, as required.
This concludes the proof, and so $|P M Q N|=|\triangle A P D|+|\triangle B Q C|$, as required.
Solution 2
Let $A M=x$ and $M B=y$. Then $A B=x+y$ and so $\frac{A M}{A B}=\frac{x}{x+y}$.
Let $N C=n x$ for some real number n.
Since $\frac{N C}{D C}=\frac{A M}{A B}$, then $\frac{n x}{D C}=\frac{x}{x+y}$ and so $D C=n(x+y)$.
This tells us that $D N=D C-N C=n(x+y)-n x=n y$.
Join M to N and label the areas as shown in the diagram:

We repeatedly use the fact that triangles with a common height have areas in proportion to the lengths of their bases.
For example, $\triangle M D N$ and $\triangle M N C$ have a common height from line segment to $D C$ to M and so the ratio of their areas equals the ratio of the lengths of their bases.
In other words, $\frac{w+r}{u+v}=\frac{n x}{n y}=\frac{x}{y}$. Thus, $w+r=\frac{x}{y}(u+v)$.

Also, the ratio of the area of $\triangle N A M$ to the area of $\triangle N M B$ equals the ratio of $A M$ to MB.
This gives $\frac{k+v}{s+w}=\frac{x}{y}$ or $k+v=\frac{x}{y}(s+w)$.
Next, we join A to C and relabel the areas divided by this new line segment as shown:

(The unlabelled triangle adjacent to the one labelled k_{1} has area k_{2} and the unlabelled triangle adjacent to the one labelled r_{2} has area r_{1}.)
Consider $\triangle A N C$ and $\triangle A D N$.
As above, the ratio of their areas equals the ratio of their bases.
Thus, $\frac{k_{2}+v_{2}+w_{2}+r_{2}}{z+u}=\frac{n x}{n y}=\frac{x}{y}$, and so $k_{2}+v_{2}+w_{2}+r_{2}=\frac{x}{y}(z+u)$.
Consider $\triangle C A M$ and $\triangle C M B$.
As above, the ratio of their areas equals the ratio of their bases.
Thus, $\frac{k_{1}+v_{1}+w_{1}+r_{1}}{s+t}=\frac{x}{y}$, and so $k_{1}+v_{1}+w_{1}+r_{1}=\frac{x}{y}(s+t)$.
Adding $k_{2}+v_{2}+w_{2}+r_{2}=\frac{x}{y}(z+u)$ and $k_{1}+v_{1}+w_{1}+r_{1}=\frac{x}{y}(s+t)$ gives

$$
\left(k_{1}+k_{2}\right)+\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}\right)+\left(r_{1}+r_{2}\right)=\frac{x}{y}(s+t+z+u)
$$

or

$$
k+v+w+r=\frac{x}{y}(s+t+z+u)
$$

Since $k+v=\frac{x}{y}(s+w)$ and $w+r=\frac{x}{y}(u+v)$, then

$$
\frac{x}{y}(s+w)+\frac{x}{y}(u+v)=\frac{x}{y}(s+t+z+u)
$$

which gives

$$
s+w+u+v=s+t+z+u
$$

or

$$
w+v=t+z
$$

But $w+v$ is the area of quadrilateral $P M Q N, z$ is the area of $\triangle A P D$ and t is the area of $\triangle B Q C$. In other words, the area of quadrilateral $P M Q N$ equals the sum of the areas of $\triangle A P D$ and $\triangle P Q C$, as required.
10. (a) The Eden sequences from $\{1,2,3,4,5\}$ are

$$
\begin{array}{cccccccccc}
1 & 3 & 5 & 1,2 & 1,4 & 3,4 & 1,2,3 & 1,2,5 & 1,4,5 & 3,4,5
\end{array} \quad 1,2,3,4 \quad 1,2,3,4,5
$$

There are 12 such sequences.
We present a brief justification of why these are all of the sequences.

* An Eden sequence of length 1 consists of a single odd integer. The possible choices are 1 and 3 and 5.
* An Eden sequence of length 2 consists of an odd integer followed by a larger even integer. Since the only possible even integers here are 2 and 4, then the possible sequences are 1,2 and 1,4 and 3,4 .
* An Eden sequence of length 3 starts with an Eden sequence of length 2 and appends (that is, adds to the end) a larger odd integer. Starting with 1,2 , we form $1,2,3$ and $1,2,5$. Starting with 1,4 , we form $1,4,5$. Starting with 3,4 , we form $3,4,5$.
* An Eden sequence of length 4 starts with an Eden sequence of length 3 and appends a larger even integer. Since 2 and 4 are the only possible even integers, then the only possible sequence here is $1,2,3,4$.
* An Eden sequence of length 5 from $\{1,2,3,4,5\}$ must include all 5 elements, so is 1,2,3,4,5.
(b) We will prove that, for all positive integers $n \geq 3$, we have $e(n)=e(n-1)+e(n-2)+1$. Thus, if $e(18)=m$, then $e(19)=e(18)+e(17)+1=m+4181$ and

$$
e(20)=e(19)+e(18)+1=(m+4181)+m+1
$$

Since $e(20)=17710$, then $17710=2 m+4182$ or $2 m=13528$ and so $m=6764$.
Therefore, $e(18)=6764$ and $e(19)=6764+4181=10945$.
So we must prove that, for all positive integers $n \geq 3$, we have $e(n)=e(n-1)+e(n-2)+1$.
To simplify the reading, we use a number of abbreviations:

* ES means "Eden sequence"
* $\mathrm{ES}(m)$ means "Eden sequence from $\{1,2,3, \ldots, m\}$
* ESE and ESO mean "Eden sequence of even length" and "Eden sequence of odd length", respectively
* $\operatorname{ESE}(m)$ and $\operatorname{ESO}(m)$ mean "Eden sequence of even length from $\{1,2,3, \ldots, m\}$ " and "Eden sequence of odd length from $\{1,2,3, \ldots, m\}$ ", respectively

Method 1

For each positive integer n, let $A(n)$ be the number of $\operatorname{ESE}(n)$, and let $B(n)$ be the number of $\operatorname{ESO}(n)$.
Then $e(n)=A(n)+B(n)$ for each positive integer n.
Note also that for each positive integer $n \geq 2$, we have $e(n) \geq e(n-1)$ and $A(n) \geq A(n-1)$ and $B(n) \geq B(n-1)$. This is because every $\operatorname{ES}(n-1)$ is also an $\operatorname{ES}(n)$ because it satisfies the three required conditions. So there are at least as many $\mathrm{ES}(n)$ as there are $\mathrm{ES}(n-1)$. (The same argument works to show that there are at least as many $\operatorname{ESE}(n)$ as there are $\operatorname{ESE}(n-1)$, and at least as many $\operatorname{ESO}(n)$ as there are $\operatorname{ESO}(n-1)$.)

Note that if k is a positive integer, then $2 k+1$ is odd and $2 k$ is even.
The following four facts are true for every positive integer $k \geq 1$:
(i) $A(2 k+1)=A(2 k)$
(ii) $B(2 k)=B(2 k-1)$
(iii) $A(2 k)=A(2 k-1)+B(2 k-1)$
(iv) $B(2 k+1)=A(2 k)+B(2 k)+1$

Here are justifications for these facts:
(i) An ESE must end with an even integer. Thus, an $\operatorname{ESE}(2 k+1)$ cannot include $2 k+1$, since it would then have to include a larger even positive integer, which it cannot.
Therefore, an $\operatorname{ESE}(2 k+1)$ has largest term at most $2 k$ and so is an $\operatorname{ES}(2 k)$.
Thus, $A(2 k+1) \leq A(2 k)$.
But from above, $A(2 k+1) \geq A(2 k)$, and so $A(2 k+1)=A(2 k)$.
(ii) An ESO must end with an odd integer. Thus, an $\operatorname{ESO}(2 k)$ cannot include $2 k$, since it would then have to include a larger odd positive integer, which it cannot.
Therefore, an $\operatorname{ESO}(2 k)$ has largest term at most $2 k-1$ and so is an $\operatorname{ESO}(2 k-1)$.
Thus, $B(2 k) \leq B(2 k-1)$.
But from above, $B(2 k) \geq B(2 k-1)$, and so $B(2 k)=B(2 k-1)$.
(iii) An $\operatorname{ESE}(2 k)$ either includes $2 k$ or does not include $2 k$.

If such a sequence includes $2 k$, then removing the $2 k$ produces an $\operatorname{ESO}(2 k-1)$. Also, every $\operatorname{ESO}(2 k-1)$ can be produced in this way.
Therefore, the number of sequences in this case is $B(2 k-1)$.
If such a sequence does not include $2 k$, then the sequence can be thought of as an
$\operatorname{ESE}(2 k-1)$. Note that every $\operatorname{ESE}(2 k-1)$ is an $\operatorname{ESE}(2 k)$.
Therefore, the number of sequences in this case is $A(2 k-1)$.
Thus, $A(2 k)=A(2 k-1)+B(2 k-1)$.
(iv) $\operatorname{An} \operatorname{ESO}(2 k+1)$ is either the one term sequence $2 k+1$, or includes $2 k+1$ and more terms, or does not include $2 k+1$.
There is 1 sequence of the first kind.
As in (iii), there are $A(2 k)$ sequences of the second kind and $B(2 k)$ sequences of the third kind.
Thus, $B(2 k+1)=1+A(2 k)+B(2 k)$.
Combining these facts, for each positive integer k, we obtain

$$
\begin{aligned}
e(2 k+1) & =A(2 k+1)+B(2 k+1) \\
& =A(2 k)+(A(2 k)+B(2 k)+1) \\
& =(A(2 k)+B(2 k))+A(2 k)+1 \\
& =e(2 k)+(A(2 k-1)+B(2 k-1))+1 \\
& =e(2 k)+e(2 k-1)+1
\end{aligned}
$$

and

$$
\begin{aligned}
e(2 k) & =A(2 k)+B(2 k) \\
& =(A(2 k-1)+B(2 k-1))+B(2 k-1) \\
& =e(2 k-1)+(A(2 k-2)+B(2 k-2)+1) \\
& =e(2 k-1)+e(2 k-2)+1
\end{aligned}
$$

Therefore, for all positive integers $n \geq 3$, we have $e(n)=e(n-1)+e(n-2)+1$, as required.

Method 2

Let n be a positive integer with $n \geq 3$, and consider the $\operatorname{ES}(n)$.
We divide the sequences into three sets:
(i) The sequence 1 (there is 1 such sequence)
(ii) The sequences which begin with 1 and have more than 1 term
(iii) The sequences which do not begin with 1

We show that in case (ii) there are $e(n-1)$ sequences and in case (iii) there are $e(n-2)$ sequences. This will show that $e(n)=1+e(n-1)+e(n-2)$, as required.
(ii) Consider the set of $\operatorname{ES}(n)$ that begin with 1 . We call this set of sequences P.

We remove the 1 from each of these and consider the set of resulting sequences. We call this set Q. Note that the number of sequences in P and in Q is the same.
Each of the sequences in Q includes numbers from the set $\{2,3, \ldots, n\}$, is increasing, and has even terms in odd positions and odd terms in even positions (since each term has been shifted one position to the left).
The sequences in Q are in a one-to-one correspondence with the $\operatorname{ES}(n-1)$ (we call this set of sequences R) and so there are exactly $e(n-1)$ of them (and so $e(n-1)$ sequences in P).
We can show that this one-to-one correspondence exists by subtracting 1 from each term of each sequence in Q, to form a set of sequences S. Each of the resulting sequences is distinct, includes numbers from the set $\{1,2,3, \ldots, n-1\}$, is increasing, and has odd terms in odd positions and even terms in even positions (since each term has been reduced by 1). Also, each sequence in R can be obtained in this way (since adding 1 to each term in one of these ES gives a distinct sequence in Q).
Therefore, the number of sequences in this case is $e(n-1)$.
(iii) Consider the set of $\operatorname{ES}(n)$ that do not begin with 1 . We call this set of sequences T. Since each sequence in T does not begin with 1, then the minimum number in each sequence is 3 .
Thus, each of the sequences in T includes numbers from the set $\{3,4, \ldots, n\}$, is increasing, and has odd terms in odd positions and even terms in even positions.
The sequences in T are in a one-to-one correspondence with the $\operatorname{ES}(n-2)$ (we call this set of sequences U) and so there are exactly $e(n-2)$ of them.
We can show that this one-to-one correspondence exists by subtracting 2 from each term of each sequence in T, to form a set of sequences V. Each of the resulting sequences is distinct, includes numbers from the set $\{1,2,3, \ldots, n-2\}$, is increasing, and has odd terms in odd positions and even terms in even positions (since each term has been reduced by 2). Also, each sequence in U can be obtained in this way (since adding 2 to each term in one of these ES gives a distinct sequence in U). Therefore, the number of sequences in this case is $e(n-2)$.
This concludes our proof and shows that $e(n)=1+e(n-1)+e(n-2)$, as required.

