## 2011 Hypatia Contest (Grade 11) <br> Wednesday, April 13, 2011

1. In the diagram, $D$ and $E$ are the midpoints of $A B$ and $B C$ respectively.

(a) Determine an equation of the line passing through the points $C$ and $D$.
(b) Determine the coordinates of $F$, the point of intersection of $A E$ and $C D$.
(c) Determine the area of $\triangle D B C$.
(d) Determine the area of quadrilateral $D B E F$.
2. A set $S$ consists of all two-digit numbers such that:

- no number contains a digit of 0 or 9 , and
- no number is a multiple of 11 .
(a) Determine how many numbers in $S$ have a 3 as their tens digit.
(b) Determine how many numbers in $S$ have an 8 as their ones digit.
(c) Determine how many numbers are in $S$.
(d) Determine the sum of all the numbers in $S$.

3. Positive integers $(x, y, z)$ form a Trenti-triple if $3 x=5 y=2 z$.
(a) Determine the values of $y$ and $z$ in the Trenti-triple $(50, y, z)$.
(b) Show that for every Trenti-triple $(x, y, z), y$ must be divisible by 6 .
(c) Show that for every Trenti-triple $(x, y, z)$, the product $x y z$ must be divisible by 900 .
4. Let $F(n)$ represent the number of ways that a positive integer $n$ can be written as the sum of positive odd integers. For example,

- $F(5)=3$ since

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =1+1+3 \\
& =5
\end{aligned}
$$

- $F(6)=4$ since

$$
\begin{aligned}
6 & =1+1+1+1+1+1 \\
& =1+1+1+3 \\
& =3+3 \\
& =1+5
\end{aligned}
$$

(a) Find $F(8)$ and list all the ways that 8 can be written as the sum of positive odd integers.
(b) Prove that $F(n+1)>F(n)$ for all integers $n>3$.
(c) Prove that $F(2 n)>2 F(n)$ for all integers $n>3$.

