The CENTRE for EDUCATION in
MATHEMATICS and COMPUTING

2011 (Galois Contest
Wednesday, April 13, 2011

Solutions

(©2011 Centre for Education in Mathematics and Computing




2011 Galois Contest Solutions Page 2

1. (a)
(b)

1 1
Using Jackson’s rule, the second term of Fabien’s sequence is T 1= -1
. . . . 1 1 1
Since the second term is —1, the third term is = = —.
1—(-1) 1+1 2
1 1
Since the third term is %, the fourth term is =T =2
T2 2
. : _ 1 1
Since the fourth term is 2, the fifth term is T 1= —1.

Since the fourth term, 2, is equal to the first term and each term depends only on the
previous term, then the sequence of terms repeats every 3 terms.

That is, the sequence of numbers produced is 2, —1, %, 2,—1, %, 2,0 ...

Since the terms of the sequence 2, —1, % repeat every three terms, then we must determine
how many groups of three terms there are in the first 2011 terms.

Since 2011 = 670 x 3 + 1, the sequence 2, —1,% repeats 670 times (giving the first 2010
terms), with the 2011*" term being 2.

That is, there are 671 terms equal to 2 in Fabien’s sequence.

The repeating cycle identified in part (c) has a sum of 2+ (—1) +
This complete cycle repeats 670 times.

Thus, the sum of the first 2010 terms in the sequence is 670 x % = 1005.

Since the 2011 term is 2, the sum of all terms in Fabien’s sequence is 1005 + 2 or 1007.

1.3
2 2

We organize the possibilities that may appear on the coins in the table below.

‘5 coin’ | ‘7 coin’ | ‘10 coin’ | Score
0 0 0 0
5 0 0 5
0 7 0 7
0 0 10 10
5 7 0 12
5 0 10 15
0 7 10 17
5 7 10 22

The other possible scores are 0,5,7,10,12, 15, and 22.

Solution 1

Since the three given scores are different from one another, a different coin must be show-
ing a 0 on each of the three tosses.

That is, after the three tosses each coin has had its zero side appear once, and its non-zero
side appear twice.

This means that the total of the scores from all three tosses, 60 + 110 + 130 = 300, repre-
sents twice the sum of the number on the non-zero sides of the three coins.

If twice the sum of the non-zero numbers on the three coins equals 300, then the sum of
the non-zero numbers on the three coins is 300 = 2 or 150.

Since the maximum possible score occurs when the non-zero number appears on each of
the three coins, then the maximum possible score is 150.

Solution 2
Since the three given scores are different from one another, a different coin must be show-
ing a 0 on each of the three tosses.
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Let the non-zero number appearing on each of the three coins be a, b and c.

Since exactly one of the three coins shows a zero on each of the three tosses, we may
assume without loss of generality that a + b = 60, a + ¢ = 110, and b + ¢ = 130.

Adding the left sides of these three equations gives a + b+ a + ¢+ b+ ¢ or 2a + 2b + 2c.

Adding the right sides of the three equations gives 60 + 110 + 130 or 300.

Since 2a + 2b + 2¢ = 300, then 2(a + b+ ¢) = 300 and so a + b+ ¢ = 150.

This sum, 150, represents the score when the non-zero number appears on each of the
three coins.

Since the maximum possible score occurs when the non-zero number appears on each of
the three coins, then the maximum possible score is 150.

We organize the possibilities that may appear on the third coin in the table below, ac-
counting for all of the possible combinations of values from the first two coins:

Appearing on the ‘25 coin’ | Appearing on the ‘50 coin’ | Appearing on the 3"¢ coin

0 0 170 — 0 =170
25 0 170 — 25 =145
0 50 170 — 50 = 120
25 50 170 =75 =95

The possible non-zero numbers that may appear on the third coin are 170,145,120, and

95.

3. (a) Since ZABP = 90°, AABP is a right-angled triangle.

By the Pythagorean Theorem, BP? = AP? — AB? or BP? = 20> — 16 or BP? = 144 and
so BP =12, since BP > 0.

Since ZQTP = 90°, AQTP is a right-angled triangle with PT = 12.

Since PT = BP = 12, then by the Pythagorean Theorem, QT? = QP? — PT? or

QT? =152 — 122 or QT? = 81 and so QT =9, since QT > 0.

In triangles PQT and DQS, ZPTQ = ZDS@ = 90°.

Also, ZPQT and ZDQ@S are vertically opposite angles and are therefore equal.

Since ZPTQ = /DSQ, ZPQT = ZD@QS, and the sum of the 3 angles in any triangle is
180°, then the third pair of corresponding angles, ZQPT and ZQDS, are also equal.
Since the corresponding angles in these two triangles are equal, then APQT and ADQS
are similar triangles.

Since ABCD is a rectangle and T'S is perpendicular to BC', then ABT'S is also a rectangle.
Thus, T'S=BA=16and QS =TS - QT =16—-9=T.

As shown in part (b), APQT and ADQ@S are similar triangles.

Therefore, the ratios of corresponding side lengths in these two triangles are equal.

SD QS SD 7 7 28
That i = = - D=12x - = —.
at is, TP~ QT or T 9orS ><9 3
(d) Solution 1
In AQAS and ARAD, ZQAS and ZRAD are common (the same) angles and thus are
equal.

Since ABCD is a rectangle, ZRDA = 90° = ZQSA.

Since ZQAS = ZRAD, ZRDA = ZQSA, and the sum of the 3 angles in any triangle is
180°, then the third pair of corresponding angles, ZSQA and ZDRA, are also equal.
Since the corresponding angles in these two triangles are equal, then AQAS and ARAD
are similar triangles.
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Therefore, the ratios of corresponding side lengths in these two triangles are equal.

D DA DA
Thatis %:S—AOTRD QSXS—A
2 1 0 1
Howeve1r75DA = AS+SD =24 + 38 %, and so RD = 7 x (234) =7x % or
D —
h 18
A D
Since AQAS and ARAD are similar triangles, then g 1 g g
D 2 2 2
Thus, RA = QA x ?25 25 x (1—78)0rRA:25>< 12 and so RA = 6185
625 625 — 450 175
Since QR = RA — QA, then QR = 1 25 or QR = —1g and so QR = 18"
Therefore, QR = RD.
Solution 2

In triangles PQA and T'QP, the ratios of corresponding side lengths are equal.
. PA  PQ QA 2() 15 25 5

That is, —=—=_.

TP TQ QP 9 15 3

Therefore, APQA and ATQP are similar triangles and thus their corresponding angles

are equal.

That is, ZPQA = ZTQP = .

Since ZRQD and ZPQA are vertically opposite angles, then ZRQD = /PQA = «.

Since C'D and T'S are parallel, then by the Parallel Lines Theorem /RDQ = ZTQP = «.

Therefore, ZRDQ = ZRQD and so ARQD is an isosceles triangle with QR = RD.

Since T'(4) = 10 and T'(10) = 55, then T'(a) = T(10) — T'(4) = 45.
1

That is, ala+1) =45 or a®> +a = 90, and so a® +a — 90 = 0.

Since a > 0 and (a — 9)(a + 10) = 0, then a = 9.

1 2 1
The left side of the equation, T'(b + 1) — T'(b), gives (b+ >2(b+ ) _ b(b;— )

V?4+3b+2—-b02—-b 2b+2
simplifies to +3bF or ;_ or b+ 1.

, which

That is, b+ 1 is equatho T(z), a triangular number.

Since b > 2011, we are looking for the the smallest triangular number greater than 2012.
After some trial and error, we observe that 7'(62) = 1953 and T'(63) = 2016, and so
b+ 1= 2016 or b = 2015 is the smallest value that works.

Since T'(28) = 406, the second equation gives ¢ +d + e = 406 or e = 406 — (¢ + d).
Next, we simplify the first equation.

T)+T(d) = T(e)
cle+1) dd+1) e(e+1)
2 + 2 2
cle+1)+dd+1) = ele+1)
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We now substitute e = 406 — (¢ + d) into this equation above and simplify.

cle+1)+dd+1) = ele+1)
e+ 1) +dd+1) = (406 — (c+ d))(407 — (c + d))
E4cet+d>+d = 406 x 407 — 406(c 4+ d) — 407(c + d) + (¢ + d)?
A4ct+d+d = 406 x 407 — 813(c+ d) + (c + d)?
A4ct+d®+d = 406 x 407 — 813(c+ d) + ¢ + 2cd + d*
c+d = 406 x 407 — 813(c + d) + 2cd
2cd = c+d+813(c+ d) — 406 x 407
2cd = 814(c+d) — 406 x 407
cd = 407(c+ d) — 203 x 407
cd = 407(c+ d — 203),

as required.

Solution 1

Using the result from part (c¢), we are looking to find all triples (¢, d, e) of positive integers,
where ¢ < d < e, such that c¢d = 407(c + d — 203).

Since the right side of this equation is divisible by 407, then the left side must also be
divisible by 407.

Observe that 407 = 37 x 11.

Since cd is divisible by 407 and 407 is divisible by 37, then cd is divisible by 37.

Since 37 is a prime number, then one of ¢ or d must be divisible by 37.

Since ¢ + d + e = 406 then d + e < 406.

Since d < e, then d + d < 406 or d < 203.

Therefore, ¢ < d < 203.

Thus, one of ¢ or d is a multiple of 37 that is less than 203.

The largest multiple of 37 less than 203 is 5 x 37 = 185.

Next, we try the values d = 37,74, 111, 148, 185 in the equation cd = 407(c 4+ d — 203) to
see if we get an integer value for c.

The system of equations that we are solving is symmetric in ¢ and d.

That is, exchanging ¢ and d in the two equations yields the same two equations and thus
the same solutions, but with ¢ and d switched.

Therefore, if we happened to get a value of ¢ larger than the value of d that we were trying,
then we could just switch them.

In trying the possible values d = 37,74, 111, 148, 185, we only obtain an integer value for ¢
when d = 185.

The only triple (¢, d, e), where ¢ < d < e, such that cd = 407(c + d —203) is (33,185, 188).

Solution 2

Using the result from part (¢), we are looking to find all triples (¢, d, e) of positive integers,
where ¢ < d < e, such that c¢d = 407(c + d — 203).

Since the right side of this equation is divisible by 407, then the left side must also be
divisible by 407.

Observe that 407 = 37 x 11.

Since cd is divisible by 407 and 407 is divisible by 37, then cd is divisible by 37.

Since 37 is a prime number, then one of ¢ or d must be divisible by 37.

Suppose that d is divisible by 37, or that d = 37n for some positive integer n.
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(We will consider the possibility that it is ¢ that is divisible by 37 later in the solution.)
Since ¢+ d + e = 406 and ¢, d, e are positive integers, then 1 < d <404 or 1 <n < 10.
With d = 37n our equation cd = 407(c 4+ d — 203) becomes 37cn = 407(c + 37n — 203).
Dividing through by 37, we get cn = 11(c+37n —203) or cn — 11c = 11 x 37n — 11 x 203.
407n — 2233

n—11
Since the numerator 407n—2233 can be written as 407n—4477+2244 or 407(n—11)+2244,

407(n — 11) + 2244 407(n — 11) n 2244 A07 4+ 2244
rc= rc= .
n— 11 T a1 e n— 11
Since c is a positive integer, then n — 11 must divide 2244.

Since 1 <n <10, then =10 <n —11 < —1.

Thus, the only possibilities for n — 11 are —1, -2, —3, —4, and —6.

However, of these 5 possibilities only n — 11 = —6 gives a positive value for c.
Since n — 11 = —6, then n =5, d = 37 x 5 =185, ¢ = 33 and e = 406 — (c + d) = 188.
A triple (¢, d, e), where ¢ < d < e, such that e¢d = 407(c + d — 203) is (33, 185, 188).

Isolating ¢ in this equation we have c¢(n — 11) = 407n — 2233 or ¢ =

then we have ¢ =

Earlier in this solution we made the assumption that d was divisible by 37.

Suppose that it is ¢ that is divisible by 37 or that ¢ = 37n for some positive integer n.

Since ¢+ d + e = 406 and ¢, d, e are positive integers, then 1 < ¢ <404 or 1 <n < 10.

With ¢ = 37n our equation cd = 407(c + d — 203) becomes 37dn = 407(37n + d — 203).

Dividing through by 37, we get dn = 11(37n+d —203) or dn—11d = 11 x 37n — 11 x 203.
407n — 2233

Isolating d in this equation we have d(n — 11) = 407n — 2233 or d = s T

/”L —

Since the numerator 407n—2233 can be written as 407n—4477+42244 or 407(n—11)+2244,

407(n — 11) + 2244 407(n — 11) 2244 2244

p— pr— 4 .
n— 11 ord=—Tqr Tao A= T
Since d is a positive integer, then n — 11 must divide 2244.

Since 1 <n <10, then =10 <n —11 < —1.

Thus, the only possibilities for n — 11 are —1, -2, —3, —4, and —6.

However, of these 5 possibilities only n — 11 = —6 gives a positive value for d.
Since n — 11 = —6, then n =5, ¢ =37 x 5 =185, d = 33 and e = 406 — (c + d) = 188.
Since there is a restriction that ¢ < d < e, then this solution is not possible.

then we have d =

The only triple (¢, d, e), where ¢ < d < e, such that cd = 407(c+ d — 203) is (33, 185, 188).



