The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

2011 Galois Contest Wednesday, April 13, 2011

Solutions

1. (a) Using Jackson's rule, the second term of Fabien's sequence is $\frac{1}{1-2}=\frac{1}{-1}=-1$.
(b) Since the second term is -1 , the third term is $\frac{1}{1-(-1)}=\frac{1}{1+1}=\frac{1}{2}$.

Since the third term is $\frac{1}{2}$, the fourth term is $\frac{1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2$.
Since the fourth term is 2 , the fifth term is $\frac{1}{1-2}=\frac{1}{-1}=-1$.
(c) Since the fourth term, 2, is equal to the first term and each term depends only on the previous term, then the sequence of terms repeats every 3 terms.
That is, the sequence of numbers produced is $2,-1, \frac{1}{2}, 2,-1, \frac{1}{2}, 2, \ldots$.
Since the terms of the sequence $2,-1, \frac{1}{2}$ repeat every three terms, then we must determine how many groups of three terms there are in the first 2011 terms.
Since $2011=670 \times 3+1$, the sequence $2,-1, \frac{1}{2}$ repeats 670 times (giving the first 2010 terms), with the $2011^{\text {th }}$ term being 2 .
That is, there are 671 terms equal to 2 in Fabien's sequence.
(d) The repeating cycle identified in part (c) has a sum of $2+(-1)+\frac{1}{2}=\frac{3}{2}$.

This complete cycle repeats 670 times.
Thus, the sum of the first 2010 terms in the sequence is $670 \times \frac{3}{2}=1005$.
Since the $2011^{\text {th }}$ term is 2 , the sum of all terms in Fabien's sequence is $1005+2$ or 1007 .
2. (a) We organize the possibilities that may appear on the coins in the table below.

'5 coin'	' 7 coin'	'10 coin'	Score
0	0	0	0
5	0	0	5
0	7	0	7
0	0	10	10
5	7	0	12
5	0	10	15
0	7	10	17
5	7	10	22

The other possible scores are $0,5,7,10,12,15$, and 22 .
(b) Solution 1

Since the three given scores are different from one another, a different coin must be showing a 0 on each of the three tosses.
That is, after the three tosses each coin has had its zero side appear once, and its non-zero side appear twice.
This means that the total of the scores from all three tosses, $60+110+130=300$, represents twice the sum of the number on the non-zero sides of the three coins.
If twice the sum of the non-zero numbers on the three coins equals 300 , then the sum of the non-zero numbers on the three coins is $300 \div 2$ or 150 .
Since the maximum possible score occurs when the non-zero number appears on each of the three coins, then the maximum possible score is 150 .

Solution 2

Since the three given scores are different from one another, a different coin must be showing a 0 on each of the three tosses.

Let the non-zero number appearing on each of the three coins be a, b and c.
Since exactly one of the three coins shows a zero on each of the three tosses, we may assume without loss of generality that $a+b=60, a+c=110$, and $b+c=130$.
Adding the left sides of these three equations gives $a+b+a+c+b+c$ or $2 a+2 b+2 c$.
Adding the right sides of the three equations gives $60+110+130$ or 300 .
Since $2 a+2 b+2 c=300$, then $2(a+b+c)=300$ and so $a+b+c=150$.
This sum, 150, represents the score when the non-zero number appears on each of the three coins.
Since the maximum possible score occurs when the non-zero number appears on each of the three coins, then the maximum possible score is 150 .
(c) We organize the possibilities that may appear on the third coin in the table below, accounting for all of the possible combinations of values from the first two coins:

Appearing on the ' 25 coin'	Appearing on the '50 coin'	Appearing on the $3^{\text {rd }}$ coin
0	0	$170-0=170$
25	0	$170-25=145$
0	50	$170-50=120$
25	50	$170-75=95$

The possible non-zero numbers that may appear on the third coin are $170,145,120$, and 95.
3. (a) Since $\angle A B P=90^{\circ}, \triangle A B P$ is a right-angled triangle.

By the Pythagorean Theorem, $B P^{2}=A P^{2}-A B^{2}$ or $B P^{2}=20^{2}-16^{2}$ or $B P^{2}=144$ and so $B P=12$, since $B P>0$.
Since $\angle Q T P=90^{\circ}, \triangle Q T P$ is a right-angled triangle with $P T=12$.
Since $P T=B P=12$, then by the Pythagorean Theorem, $Q T^{2}=Q P^{2}-P T^{2}$ or $Q T^{2}=15^{2}-12^{2}$ or $Q T^{2}=81$ and so $Q T=9$, since $Q T>0$.
(b) In triangles $P Q T$ and $D Q S, \angle P T Q=\angle D S Q=90^{\circ}$.

Also, $\angle P Q T$ and $\angle D Q S$ are vertically opposite angles and are therefore equal.
Since $\angle P T Q=\angle D S Q, \angle P Q T=\angle D Q S$, and the sum of the 3 angles in any triangle is 180°, then the third pair of corresponding angles, $\angle Q P T$ and $\angle Q D S$, are also equal.
Since the corresponding angles in these two triangles are equal, then $\triangle P Q T$ and $\triangle D Q S$ are similar triangles.
(c) Since $A B C D$ is a rectangle and $T S$ is perpendicular to $B C$, then $A B T S$ is also a rectangle. Thus, $T S=B A=16$ and $Q S=T S-Q T=16-9=7$.
As shown in part (b), $\triangle P Q T$ and $\triangle D Q S$ are similar triangles.
Therefore, the ratios of corresponding side lengths in these two triangles are equal.
That is, $\frac{S D}{T P}=\frac{Q S}{Q T}$ or $\frac{S D}{12}=\frac{7}{9}$ or $S D=12 \times \frac{7}{9}=\frac{28}{3}$.
(d) Solution 1

In $\triangle Q A S$ and $\triangle R A D, \angle Q A S$ and $\angle R A D$ are common (the same) angles and thus are equal.
Since $A B C D$ is a rectangle, $\angle R D A=90^{\circ}=\angle Q S A$.
Since $\angle Q A S=\angle R A D, \angle R D A=\angle Q S A$, and the sum of the 3 angles in any triangle is 180°, then the third pair of corresponding angles, $\angle S Q A$ and $\angle D R A$, are also equal.
Since the corresponding angles in these two triangles are equal, then $\triangle Q A S$ and $\triangle R A D$ are similar triangles.

Therefore, the ratios of corresponding side lengths in these two triangles are equal.
That is, $\frac{R D}{Q S}=\frac{D A}{S A}$ or $R D=Q S \times \frac{D A}{S A}$.
However, $D A=A S+S D=24+\frac{28}{3}=\frac{100}{3}$, and so $R D=7 \times \frac{\left(\frac{100}{3}\right)}{24}=7 \times \frac{100}{72}$ or $R D=\frac{175}{18}$.
Since $\triangle Q A S$ and $\triangle R A D$ are similar triangles, then $\frac{R A}{Q A}=\frac{R D}{Q S}$.
Thus, $R A=Q A \times \frac{R D}{Q S}=25 \times \frac{\left(\frac{175}{18}\right)}{7}$ or $R A=25 \times \frac{25}{18}$, and so $R A=\frac{625}{18}$.
Since $Q R=R A-Q A$, then $Q R=\frac{625}{18}-25$ or $Q R=\frac{625-450}{18}$, and so $Q R=\frac{175}{18}$.
Therefore, $Q R=R D$.

Solution 2

In triangles $P Q A$ and $T Q P$, the ratios of corresponding side lengths are equal.
That is, $\frac{P A}{T P}=\frac{P Q}{T Q}=\frac{Q A}{Q P}$ or $\frac{20}{12}=\frac{15}{9}=\frac{25}{15}=\frac{5}{3}$.
Therefore, $\triangle P Q A$ and $\triangle T Q P$ are similar triangles and thus their corresponding angles are equal.
That is, $\angle P Q A=\angle T Q P=\alpha$.
Since $\angle R Q D$ and $\angle P Q A$ are vertically opposite angles, then $\angle R Q D=\angle P Q A=\alpha$.
Since $C D$ and $T S$ are parallel, then by the Parallel Lines Theorem $\angle R D Q=\angle T Q P=\alpha$.
Therefore, $\angle R D Q=\angle R Q D$ and so $\triangle R Q D$ is an isosceles triangle with $Q R=R D$.
4. (a) Since $T(4)=10$ and $T(10)=55$, then $T(a)=T(10)-T(4)=45$.

That is, $\frac{a(a+1)}{2}=45$ or $a^{2}+a=90$, and so $a^{2}+a-90=0$.
Since $a>0$ and $(a-9)(a+10)=0$, then $a=9$.
(b) The left side of the equation, $T(b+1)-T(b)$, gives $\frac{(b+1)(b+2)}{2}-\frac{b(b+1)}{2}$, which simplifies to $\frac{b^{2}+3 b+2-b^{2}-b}{2}$ or $\frac{2 b+2}{2}$ or $b+1$.
That is, $b+1$ is equal to $T(x)$, a triangular number.
Since $b>2011$, we are looking for the the smallest triangular number greater than 2012. After some trial and error, we observe that $T(62)=1953$ and $T(63)=2016$, and so $b+1=2016$ or $b=2015$ is the smallest value that works.
(c) Since $T(28)=406$, the second equation gives $c+d+e=406$ or $e=406-(c+d)$.

Next, we simplify the first equation.

$$
\begin{aligned}
T(c)+T(d) & =T(e) \\
\frac{c(c+1)}{2}+\frac{d(d+1)}{2} & =\frac{e(e+1)}{2} \\
c(c+1)+d(d+1) & =e(e+1)
\end{aligned}
$$

We now substitute $e=406-(c+d)$ into this equation above and simplify.

$$
\begin{aligned}
c(c+1)+d(d+1) & =e(e+1) \\
c(c+1)+d(d+1) & =(406-(c+d))(407-(c+d)) \\
c^{2}+c+d^{2}+d & =406 \times 407-406(c+d)-407(c+d)+(c+d)^{2} \\
c^{2}+c+d^{2}+d & =406 \times 407-813(c+d)+(c+d)^{2} \\
c^{2}+c+d^{2}+d & =406 \times 407-813(c+d)+c^{2}+2 c d+d^{2} \\
c+d & =406 \times 407-813(c+d)+2 c d \\
2 c d & =c+d+813(c+d)-406 \times 407 \\
2 c d & =814(c+d)-406 \times 407 \\
c d & =407(c+d)-203 \times 407 \\
c d & =407(c+d-203)
\end{aligned}
$$

as required.

(d) Solution 1

Using the result from part (c), we are looking to find all triples (c, d, e) of positive integers, where $c \leq d \leq e$, such that $c d=407(c+d-203)$.
Since the right side of this equation is divisible by 407, then the left side must also be divisible by 407 .
Observe that $407=37 \times 11$.
Since $c d$ is divisible by 407 and 407 is divisible by 37 , then $c d$ is divisible by 37 .
Since 37 is a prime number, then one of c or d must be divisible by 37 .
Since $c+d+e=406$ then $d+e \leq 406$.
Since $d \leq e$, then $d+d \leq 406$ or $d \leq 203$.
Therefore, $c \leq d \leq 203$.
Thus, one of c or d is a multiple of 37 that is less than 203.
The largest multiple of 37 less than 203 is $5 \times 37=185$.
Next, we try the values $d=37,74,111,148,185$ in the equation $c d=407(c+d-203)$ to see if we get an integer value for c.
The system of equations that we are solving is symmetric in c and d.
That is, exchanging c and d in the two equations yields the same two equations and thus the same solutions, but with c and d switched.
Therefore, if we happened to get a value of c larger than the value of d that we were trying, then we could just switch them.
In trying the possible values $d=37,74,111,148,185$, we only obtain an integer value for c when $d=185$.
The only triple (c, d, e), where $c \leq d \leq e$, such that $c d=407(c+d-203)$ is $(33,185,188)$.

Solution 2

Using the result from part (c), we are looking to find all triples (c, d, e) of positive integers, where $c \leq d \leq e$, such that $c d=407(c+d-203)$.
Since the right side of this equation is divisible by 407, then the left side must also be divisible by 407 .
Observe that $407=37 \times 11$.
Since $c d$ is divisible by 407 and 407 is divisible by 37 , then $c d$ is divisible by 37 .
Since 37 is a prime number, then one of c or d must be divisible by 37 .
Suppose that d is divisible by 37 , or that $d=37 n$ for some positive integer n.
(We will consider the possibility that it is c that is divisible by 37 later in the solution.)
Since $c+d+e=406$ and c, d, e are positive integers, then $1 \leq d \leq 404$ or $1 \leq n \leq 10$.
With $d=37 n$ our equation $c d=407(c+d-203)$ becomes $37 c n=407(c+37 n-203)$.
Dividing through by 37 , we get $c n=11(c+37 n-203)$ or $c n-11 c=11 \times 37 n-11 \times 203$.
Isolating c in this equation we have $c(n-11)=407 n-2233$ or $c=\frac{407 n-2233}{n-11}$.
Since the numerator $407 n-2233$ can be written as $407 n-4477+2244$ or $407(n-11)+2244$, then we have $c=\frac{407(n-11)+2244}{n-11}$ or $c=\frac{407(n-11)}{n-11}+\frac{2244}{n-11}$ or $c=407+\frac{2244}{n-11}$.
Since c is a positive integer, then $n-11$ must divide 2244 .
Since $1 \leq n \leq 10$, then $-10 \leq n-11 \leq-1$.
Thus, the only possibilities for $n-11$ are $-1,-2,-3,-4$, and -6 .
However, of these 5 possibilities only $n-11=-6$ gives a positive value for c.
Since $n-11=-6$, then $n=5, d=37 \times 5=185, c=33$ and $e=406-(c+d)=188$.
A triple (c, d, e), where $c \leq d \leq e$, such that $c d=407(c+d-203)$ is $(33,185,188)$.
Earlier in this solution we made the assumption that d was divisible by 37 .
Suppose that it is c that is divisible by 37 or that $c=37 n$ for some positive integer n.
Since $c+d+e=406$ and c, d, e are positive integers, then $1 \leq c \leq 404$ or $1 \leq n \leq 10$.
With $c=37 n$ our equation $c d=407(c+d-203)$ becomes $37 d n=407(37 n+d-203)$.
Dividing through by 37 , we get $d n=11(37 n+d-203)$ or $d n-11 d=11 \times 37 n-11 \times 203$.
Isolating d in this equation we have $d(n-11)=407 n-2233$ or $d=\frac{407 n-2233}{n-11}$.
Since the numerator $407 n-2233$ can be written as $407 n-4477+2244$ or $407(n-11)+2244$, then we have $d=\frac{407(n-11)+2244}{n-11}$ or $d=\frac{407(n-11)}{n-11}+\frac{2244}{n-11}$ or $d=407+\frac{2244}{n-11}$. Since d is a positive integer, then $n-11$ must divide 2244 .
Since $1 \leq n \leq 10$, then $-10 \leq n-11 \leq-1$.
Thus, the only possibilities for $n-11$ are $-1,-2,-3,-4$, and -6 .
However, of these 5 possibilities only $n-11=-6$ gives a positive value for d.
Since $n-11=-6$, then $n=5, c=37 \times 5=185, d=33$ and $e=406-(c+d)=188$.
Since there is a restriction that $c \leq d \leq e$, then this solution is not possible.
The only triple (c, d, e), where $c \leq d \leq e$, such that $c d=407(c+d-203)$ is $(33,185,188)$.

