The CENTRE for EDUCATION in MATHEMATICS and COMPUTING www.cemc.uwaterloo.ca

2011 Canadian Senior Mathematics Contest

Tuesday, November 22, 2011 (in North America and South America)

Wednesday, November 23, 2011 (outside of North America and South America)

Solutions

Part A

1. Solution 1

Multiplying through, we obtain

$$
2^{4}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right)=16+\frac{16}{2}+\frac{16}{4}+\frac{16}{8}+\frac{16}{16}=16+8+4+2+1=31
$$

Solution 2
Using a common denominator inside the parentheses, we obtain

$$
2^{4}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right)=16\left(\frac{16}{16}+\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)=16\left(\frac{31}{16}\right)=31
$$

Answer: 31
2. Suppose that Daryl's age now is d and Joe's age now is j.

Four years ago, Daryl's age was $d-4$ and Joe's age was $j-4$.
In five years, Daryl's age will be $d+5$ and Joe's age will be $j+5$.
From the first piece of given information, $d-4=3(j-4)$ and so $d-4=3 j-12$ or $d=3 j-8$.
From the second piece of given information, $d+5=2(j+5)$ and so $d+5=2 j+10$ or $d=2 j+5$.
Equating values of d, we obtain $3 j-8=2 j+5$ which gives $j=13$.
Substituting, we obtain $d=2(13)+5=31$.
Therefore, Daryl is 31 years old now.
Answer: 31
3. When the red die is rolled, there are 6 equally likely outcomes. Similarly, when the blue die is rolled, there are 6 equally likely outcomes.
Therefore, when the two dice are rolled, there are $6 \times 6=36$ equally likely outcomes for the combination of the numbers on the top face of each. (These outcomes are Red 1 and Blue 1, Red 1 and Blue 2, Red 1 and Blue 3, ..., Red 6 and Blue 6.)
The chart below shows these possibilities along with the sum of the numbers in each case:

		Blue Die					
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
Red	3	4	5	6	7	8	9
Die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Since the only perfect squares between 2 and 12 are 4 (which equals 2^{2}) and 9 (which equals 3^{2}), then 7 of the 36 possible outcomes are perfect squares.
Since each entry in the table is equally likely, then the probability that the sum is a perfect square is $\frac{7}{36}$.
4. Solution 1

We find the prime factorization of 18800 :

$$
18800=188 \cdot 100=2 \cdot 94 \cdot 10^{2}=2 \cdot 2 \cdot 47 \cdot(2 \cdot 5)^{2}=2^{2} \cdot 47 \cdot 2^{2} \cdot 5^{2}=2^{4} 5^{2} 47^{1}
$$

If d is a positive integer divisor of 18800 , it cannot have more than 4 factors of 2 , more than 2 factors of 5 , more than 1 factor of 47 , and cannot include any other prime factors. Therefore, if d is a positive integer divisor of 18800 , then $d=2^{a} 5^{b} 47^{c}$ for some integers a, b and c with $0 \leq a \leq 4$ and $0 \leq b \leq 2$ and $0 \leq c \leq 1$.
Since we want to count all divisors d that are divisible by 235 and $235=5 \times 47$, then we need d to contain at least one factor of each of 5 and 47 , and so $b \geq 1$ and $c \geq 1$. (Since $0 \leq c \leq 1$, then c must equal 1.)
Let D be a positive integer divisor of 18800 that is divisible by 235 .
Then D is of the form $d=2^{a} 5^{b} 47^{1}$ for some integers a and b with $0 \leq a \leq 4$ and $1 \leq b \leq 2$.
Since there are 5 possible values for a and 2 possible values for b, then there are $5 \times 2=10$ possible values for D.
Therefore, there are 10 positive divisors of 18800 that are divisible by 235 .
Solution 2
Any positive divisor of 18800 that is divisible by 235 is of the form $235 q$ for some positive integer q. Thus, we want to count the number of positive integers q for which $235 q$ divides exactly into 18800 .
For $235 q$ to divide exactly into 18800 , we need $(235 q) d=18800$ for some positive integer d.
Simplifying, we want $q d=\frac{18800}{235}=80$ for some positive integer d.
This means that we want to count the positive integers q for which there is a positive integer d such that $q d=80$.
In other words, we want to count the positive divisors of 80 .
We can do this using a similar method to that in (a), or since 80 is relatively small, we can list the divisors: $1,2,4,5,8,10,16,20,40,80$.
There are 10 such positive divisors, so 18800 has 10 positive divisors that are divisible by 235 .
5. Since $O F$ passes through the centre of the circle and is perpendicular to each of chord $A B$ and chord $D C$, then it bisects each of $A B$ and $D C$. (That is, $A E=E B$ and $D F=F C$.)
To see that $A E=E B$, we could join O to A and O to B. Since $O A=O B$ (as they are radii), $O E$ is common to each of $\triangle O A E$ and $\triangle O B E$, and each of these triangles is right-angled, then the triangles are congruent and so $A E=E B$. Using a similar approach shows that $D F=F C$. Since $A E=E B$ and $A B=8$, then $A E=E B=4$.
Since $D F=F C$ and $D C=6$, then $D F=F C=3$.
Join O to B and O to C.
Let r be the radius of the circle and let $O E=x$.
Since $\triangle O E B$ is right-angled with $O E=x, E B=4$ and $O B=r$, then $r^{2}=x^{2}+4^{2}$ by the Pythagorean Theorem.
Since $O E=x$ and $E F=1$, then $O F=x+1$.
Since $\triangle O F C$ is right-angled with $O F=x+1, F C=3$ and $O C=r$, then $r^{2}=(x+1)^{2}+3^{2}$ by the Pythagorean Theorem.

Subtracting the first equation from the second, we obtain $0=\left(x^{2}+2 x+1+9\right)-\left(x^{2}+16\right)$ or $0=2 x-6$ or $x=3$.
Since $x=3$, then $r^{2}=3^{2}+4^{2}=25$ and since $r>0$, we get $r=5$.
Answer: 5
6. Let R_{1}, R_{2} and R_{3} represent the three rows, C_{1}, C_{2} and C_{3} the three columns, D_{1} the diagonal from the bottom left to the top right, and D_{2} the diagonal from the top left to the bottom right. Since the sum of the numbers in R_{1} equals the sum of the numbers in D_{1}, then

$$
\log a+\log b+\log x=\log z+\log y+\log x
$$

Simplifying, we get $\log a+\log b=\log z+\log y$ and so $\log (a b)=\log (y z)$ or $a b=y z$.
Thus, $z=\frac{a b}{y}$.
Since the sum of the numbers in C_{1} equals the sum of the numbers in R_{2}, then

$$
\log a+p+\log z=p+\log y+\log c
$$

Simplifying, we get $\log a+\log z=\log y+\log c$ and so $\log (a z)=\log (c y)$ or $a z=c y$.
Thus, $z=\frac{c y}{a}$.
Since $z=\frac{a b}{y}$ and $z=\frac{c y}{a}$, then we obtain $\frac{a b}{y}=\frac{c y}{a}$ or $y^{2}=\frac{a^{2} b}{c}$.
Since $a, b, c, y>0$, then $y=\frac{a b^{1 / 2}}{c^{1 / 2}}$.
Since the sum of the numbers in C_{3} equals the sum of the numbers in D_{2}, then

$$
\log x+\log c+r=\log a+\log y+r
$$

Simplifying, we get $\log x+\log c=\log a+\log y$ and so $\log (x c)=\log (a y)$ or $x c=a y$.
Thus, $x=\frac{a y}{c}$.
Therefore, $x y z=\frac{a y}{c} \cdot y \cdot \frac{c y}{a}=y^{3}=\left(\frac{a b^{1 / 2}}{c^{1 / 2}}\right)^{3}=\frac{a^{3} b^{3 / 2}}{c^{3 / 2}}$.
(Note that there are many other ways to obtain this same answer.)
ANSWER: $\quad x y z=\frac{a^{3} b^{3 / 2}}{c^{3 / 2}}$

Part B

1. (a) The points A and B are the points where the parabola with equation $y=25-x^{2}$ intersects the x-axis.
To find their coordinates, we solve the equation $0=25-x^{2}$ to get $x^{2}=25$ or $x= \pm 5$.
Thus, A has coordinates $(-5,0)$ and B has coordinates $(5,0)$.
Therefore, $A B=5-(-5)=10$.
(b) Since $A B C D$ is a rectangle, $B C=A D$ and $\angle D A B=90^{\circ}$.

Since $B D=26$ and $A B=10$, then by the Pythagorean Theorem,

$$
A D=\sqrt{B D^{2}-A B^{2}}=\sqrt{26^{2}-10^{2}}=\sqrt{676-100}=\sqrt{576}=24
$$

since $A D>0$.
Since $B C=A D$, then $B C=24$.
(c) Since $A B C D$ is a rectangle with sides parallel to the axes, then D and C are vertically below A and B, respectively.
Since $A D=B C=24, A$ has coordinates $(-5,0)$ and B has coordinates $(5,0)$, then D has coordinates $(-5,-24)$ and C has coordinates $(5,-24)$.
Thus, line segment $D C$ lies along the line with equation $y=-24$.
Therefore, the points E and F are the points of intersection of the line $y=-24$ with the parabola with equation $y=25-x^{2}$.
To find their coordinates, we solve $-24=25-x^{2}$ to get $x^{2}=49$ or $x= \pm 7$.
Thus, E and F have coordinates $(-7,-24)$ and $(7,-24)$ and so $E F=7-(-7)=14$.
2. (a) If x and y are positive integers with $\frac{2 x+11 y}{3 x+4 y}=1$, then $2 x+11 y=3 x+4 y$ or $7 y=x$.

We try $x=7$ and $y=1$.
In this case, $\frac{2 x+11 y}{3 x+4 y}=\frac{2(7)+11(1)}{3(7)+4(1)}=\frac{25}{25}=1$, as required.
Therefore, the integers $x=7$ and $y=1$ have the required property.
(In fact, any pair of positive integers (x, y) with $x=7 y$ will have the required property.)
(b) Suppose $u=\frac{a}{b}$ and $v=\frac{c}{d}$ for some positive integers a, b, c, d.

The average of u and v is $\frac{1}{2}(u+v)=\frac{1}{2}\left(\frac{a}{b}+\frac{c}{d}\right)=\frac{1}{2}\left(\frac{a d+b c}{b d}\right)=\frac{a d+b c}{2 b d}$.
Since $u=\frac{a}{b}=\frac{a x}{b x}$ and $v=\frac{c}{d}=\frac{c y}{d y}$ for all positive integers x and y, then each fraction of the form $\frac{a x+c y}{b x+d y}$ is a mediant of u and v.
Can we write $\frac{a d+b c}{2 b d}$ in the form $\frac{a x+c y}{b x+d y}$ for some positive integers x and y ?
Yes, we can. If $x=d$ and $y=b$, then $\frac{a x+c y}{b x+d y}=\frac{a d+c b}{b d+d b}=\frac{a d+b c}{2 b d}$.
Thus, writing $u=\frac{a d}{b d}$ and $v=\frac{b c}{b d}$ gives us the mediant $\frac{a d+b c}{b d+b d}=\frac{a d+b c}{2 b d}$, which equals the average of u and v.
Therefore, the average of u and v is indeed a mediant of u and v.
(c) Suppose that u and v are two positive rational numbers with $u<v$.

Any mediant m of u and v is of the form $\frac{a+c}{b+d}$ where $u=\frac{a}{b}$ and $v=\frac{c}{d}$ for some positive integers a, b, c, d.
Since $u<v$, then $\frac{a}{b}<\frac{c}{d}$ and so $a d<b c$ (since $b, d>0$).
We need to show that $u<m$ and that $m<v$.
To do this, we show that $m-u>0$ and that $v-m>0$.
Consider $m-u$:

$$
m-u=\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{a b+b c-a b-a d}{b(b+d)}=\frac{b c-a d}{b(b+d)}
$$

Since $a, b, c, d>0$, then the denominator of this fraction is positive. Since $b c>a d$, then the numerator of this fraction is positive.
Therefore, $m-u=\frac{b c-a d}{b(b+d)}>0$, so $m>u$.
Consider $v-m$:

$$
v-m=\frac{c}{d}-\frac{a+c}{b+d}=\frac{c(b+d)-d(a+c)}{d(b+d)}=\frac{b c+c d-a d-c d}{d(b+d)}=\frac{b c-a d}{d(b+d)}
$$

Since $a, b, c, d>0$, then the denominator of this fraction is positive. Since $b c>a d$, then the numerator of this fraction is positive.
Therefore, $v-m=\frac{b c-a d}{d(b+d)}>0$, so $v>m$.
Thus, $u<m<v$, as required.
3. (a) We list all of the possible products by starting with all of those beginning with a_{1} (that is, with $i=1$), then all of those beginning with a_{2}, then all of those beginning with a_{3} :

$$
\begin{array}{ll}
a_{1} a_{2} a_{3}=(-1) \cdot(-1) \cdot 1=1 & a_{1} a_{4} a_{5}=(-1) \cdot 1 \cdot 1=-1 \\
a_{1} a_{2} a_{4}=(-1) \cdot(-1) \cdot 1=1 & a_{2} a_{3} a_{4}=(-1) \cdot 1 \cdot 1=-1 \\
a_{1} a_{2} a_{5}=(-1) \cdot(-1) \cdot 1=1 & a_{2} a_{3} a_{5}=(-1) \cdot 1 \cdot 1=-1 \\
a_{1} a_{3} a_{4}=(-1) \cdot 1 \cdot 1=-1 & a_{2} a_{4} a_{5}=(-1) \cdot 1 \cdot 1=-1 \\
a_{1} a_{3} a_{5}=(-1) \cdot 1 \cdot 1=-1 & a_{3} a_{4} a_{5}=1 \cdot 1 \cdot 1=1
\end{array}
$$

Of the ten products, 4 are equal to 1 .
(b) Each product $a_{i} a_{j} a_{k}$ is equal to 1 or -1 , depending on whether it includes an even number of factors of -1 or an odd number of factors of -1 .
If $a_{i} a_{j} a_{k}$ includes three 1 s and zero $(-1) \mathrm{s}$, it equals 1 .
If $a_{i} a_{j} a_{k}$ includes two 1 s and one (-1), it equals -1 .
If $a_{i} a_{j} a_{k}$ includes one 1 and two $(-1) \mathrm{s}$, it equals 1 .
If $a_{i} a_{j} a_{k}$ includes zero 1 s and three (-1)s, it equals -1 .
Since the sequence includes m terms equal to -1 and p terms equal to 1 , then

- the number of ways of choosing three 1 s and zero $(-1) \mathrm{s}$ is $\binom{p}{3}\binom{m}{0}$,
- the number of ways of choosing two 1 s and one (-1) is $\binom{p}{2}\binom{m}{1}$,
- the number of ways of choosing one 1 and two $(-1) \mathrm{s}$ is $\binom{p}{1}\binom{m}{2}$, and
- the number of ways of choosing zero 1 s and three $(-1) \mathrm{s}$ is $\binom{p}{0}\binom{m}{3}$.

Therefore, the number of products $a_{i} a_{j} a_{k}$ equal to 1 is $\binom{p}{3}\binom{m}{0}+\binom{p}{1}\binom{m}{2}$ and the number of products equal to -1 is $\binom{p}{2}\binom{m}{1}+\binom{p}{0}\binom{m}{3}$.
If exactly half of the products are equal to 1 , then half are equal to -1 , and so the number of products of each kind are equal.
This property is equivalent to the following equations:

$$
\begin{aligned}
\binom{p}{3}\binom{m}{0}+\binom{p}{1}\binom{m}{2} & =\binom{p}{2}\binom{m}{1}+\binom{p}{0}\binom{m}{3} \\
\frac{p(p-1)(p-2)}{3(2)(1)} \cdot 1+p \cdot \frac{m(m-1)}{2(1)} & =\frac{p(p-1)}{2(1)} \cdot m+1 \cdot \frac{m(m-1)(m-2)}{3(2)(1)} \\
\left(p^{3}-3 p^{2}+2 p\right)+3 p m(m-1) & =3 m p(p-1)+\left(m^{3}-3 m^{2}+2 m\right) \\
p^{3}-3 p^{2}+2 p+3 m^{2} p-3 m p & =3 m p^{2}-3 m p+m^{3}-3 m^{2}+2 m
\end{aligned}
$$

Each step so far is reversible so this last equation is equivalent to the desired property. Grouping all terms on the left side and factoring, we obtain

$$
\begin{aligned}
p^{3}-m^{3}-3\left(p^{2}-m^{2}\right)+2(p-m)+3 m^{2} p-3 m p^{2} & =0 \\
(p-m)\left(p^{2}+m p+m^{2}\right)-3(p-m)(p+m)+2(p-m)-3 m p(p-m) & =0 \\
(p-m)\left(p^{2}+m p+m^{2}-3(p+m)+2-3 m p\right) & =0 \\
(p-m)\left(p^{2}-3 p-2 m p+m^{2}-3 m+2\right) & =0
\end{aligned}
$$

(We have used $p^{3}-m^{3}=(p-m)\left(p^{2}+m p+m^{2}\right)$ and $p^{2}-m^{2}=(p-m)(p+m)$.)
Therefore, the desired property is equivalent to the condition that either $p-m=0$ or $p^{2}-3 p-2 m p+m^{2}-3 m+2=0$.
We count the number of pairs (m, p) in each of these two cases. The first case is easier than the second.

Case 1: $p-m=0$
We want to count the number of pairs (m, p) of positive integers that satisfy

$$
1 \leq m \leq p \leq 1000 \quad \text { and } \quad m+p \geq 3 \quad \text { and } \quad p-m=0
$$

If $p-m=0$, then $p=m$. Since $1 \leq m \leq p \leq 1000$ and $m+p \geq 3$, then the possible pairs (m, p) are of the form $(m, p)=(k, k)$ with k a positive integer ranging from $k=2$ to $k=1000$, inclusive. There are 999 such pairs.

Case 2: $p^{2}-3 p-2 m p+m^{2}-3 m+2=0$
We want to count the number of pairs (m, p) of positive integers that satisfy

$$
1 \leq m \leq p \leq 1000 \quad \text { and } \quad m+p \geq 3 \quad \text { and } \quad p^{2}-3 p-2 m p+m^{2}-3 m+2=0
$$

We start with this last equation. We rewrite it as a quadratic equation in p (with coefficients in terms of m):

$$
p^{2}-p(2 m+3)+\left(m^{2}-3 m+2\right)=0
$$

By the quadratic formula, this equation is true if and only if

$$
\begin{aligned}
p & =\frac{(2 m+3) \pm \sqrt{(2 m+3)^{2}-4\left(m^{2}-3 m+2\right)}}{2} \\
& =\frac{(2 m+3) \pm \sqrt{\left(4 m^{2}+12 m+9\right)-\left(4 m^{2}-12 m+8\right)}}{2} \\
& =\frac{(2 m+3) \pm \sqrt{24 m+1}}{2}
\end{aligned}
$$

Since $m \geq 1$, then $24 m+1 \geq 25$ and so $\sqrt{24 m+1} \geq 5$.
This means that $\frac{(2 m+3)-\sqrt{24 m+1}}{2} \leq \frac{(2 m+3)-5}{2}=m-1$.
In other words, if $p=\frac{(2 m+3)-\sqrt{24 m+1}}{2}$, then $p \leq m-1$. But $p \geq m$, so this is impossible.
Therefore, in Case 2 we are looking for pairs (m, p) of positive integers that satisfy

$$
\text { (I) } 1 \leq m \leq p \leq 1000 \quad \text { and } \quad \text { (II) } m+p \geq 3 \quad \text { and } \quad \text { (III) } p=\frac{(2 m+3)+\sqrt{24 m+1}}{2}
$$

From (III), for p to be an integer, it is necessary that $\sqrt{24 m+1}$ be an integer (that is, for $24 m+1$ to be a perfect square).
Since $24 m+1$ is always an odd integer, then if $24 m+1$ is a perfect square, it is an odd perfect square.
Since $24 m+1$ is one more than a multiple of 3 (because $24 m$ is a multiple of 3), then $24 m+1$ is not a multiple of 3 .
Therefore, if m gives an integer value for p, then $24 m+1$ is a perfect square that is not divisible by 3 .
So the question remains: Which odd perfect squares that are not divisible by 3 are of the form $24 m+1$?
In fact, every odd perfect square that is not a multiple of 3 is of the form $24 m+1$. (We will prove this fact at the very end of the solution.)
Therefore, the possible values of $24 m+1$ are all odd perfect squares that are not multiples of 3 . We will return to this.

We verify next that (II) is always true.
We can assume that $m \geq 1$. From the formula for p in terms of m, we can see that $p \geq \frac{(2(1)+3)+\sqrt{24(1)+1}}{2}=5$, and so $m+p \geq 1+5=6$, and so the restriction $m+p \geq 3$ is true.

We verify next that part of (I) is always true.
Note that $p=\frac{(2 m+3)+\sqrt{24 m+1}}{2} \geq \frac{2 m}{2}=m$, so the restriction $p \geq m$ is true.
Therefore, we want to count the pairs (m, p) of positive integers with $p \leq 1000$ and $p=\frac{(2 m+3)+\sqrt{24 m+1}}{2}$.

From above, the values of m that work are exactly those for which $24 m+1$ is an odd perfect square that is not a multiple of 3 .

We make a table of possible odd perfect square values for $24 m+1$ that are not multiples of 3 , and the resulting values of m and of p (from the formula above):

$24 m+1$	m	p
$5^{2}=25$	1	5
$7^{2}=49$	2	7
$11^{2}=121$	5	12
\vdots	\vdots	\vdots
$143^{2}=20449$	852	925
$145^{2}=21025$	876	950
$147^{2}=22201$	925	1001

Since $p>1000$ for this last row, we can stop. (Any larger value of $24 m+1$ will give larger values of m and thus of p.)
We could have also solved the inequality $\frac{(2 m+3)+\sqrt{24 m+1}}{2} \leq 1000$ to obtain the restriction on m.

Finally, we need to count the pairs resulting from this table.
We do this by counting the number of odd perfect squares from 5^{2} to 145^{2} inclusive that are not multiples of 3 .
This is equivalent to counting the number of odd integers from 5 to 145 that are not multiples of 3 .
In total, there are 71 odd integers from 5 to 145 inclusive, since we can add 2 a total of 70 times starting from 5 to get 145 .
The odd multiples of 3 between 5 and 145 are $9,15,21, \cdots, 135,141$. There are 23 of these, since we can add 6 a total of 22 times starting from 9 to get 141 .
Therefore, there are $71-23=48$ odd integers that are not multiples of 3 from 5 to 145 inclusive. This means that there are 48 pairs (m, p) in this case.

In total, there are then $999+48=1047$ pairs (m, p) that have the property that exactly half of the products $a_{i} a_{j} a_{k}$ are equal to 1 .

Lastly, we need to prove the unproven fact from above:
Every odd perfect square that is not a multiple of 3 is of the form $24 m+1$
Proof
Suppose that k^{2} is an odd perfect square that is not a multiple of 3 .
Since k^{2} is odd, then k is odd.
Since k^{2} is not a multiple of 3 , then k is not a multiple of 3 .
Since k is odd, then it has one of the forms $k=6 q-1$ or $k=6 q+1$ or $k=6 q+3$ for some integer q. (The form $k=6 q+5$ is equivalent to the form $k=6 q-1$.)
Since k is not a multiple of 3 , then k cannot equal $6 q+3$ (which is $3(2 q+1)$).
Therefore, $k=6 q-1$ or $k=6 q+1$.
In the first case, $k^{2}=(6 q-1)^{2}=36 q^{2}-12 q+1=12\left(3 q^{2}-q\right)+1$.
In the second case, $k^{2}=(6 q+1)^{2}=36 q^{2}+12 q+1=12\left(3 q^{2}+q\right)+1$.
If q is an even integer, then $3 q^{2}$ is even and so $3 q^{2}+q$ and $3 q^{2}-q$ are both even.

If q is an odd integer, then $3 q^{2}$ is odd and so $3 q^{2}+q$ and $3 q^{2}-q$ are both even.
If $k^{2}=12\left(3 q^{2}+q\right)+1$, then since $3 q^{2}+q$ is even, we can write $3 q^{2}+q=2 x$ for some integer x, and so $k^{2}=24 x+1$.
If $k^{2}=12\left(3 q^{2}-q\right)+1$, then since $3 q^{2}-q$ is even, we can write $3 q^{2}-q=2 y$ for some integer y, and so $k^{2}=24 y+1$.
In either case, k^{2} is one more than a multiple of 24 , as required.

