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Part A

1. Solution 1
Multiplying through, we obtain

24

(
1 +

1

2
+

1

22
+

1

23
+

1

24

)
= 16 +

16

2
+

16

4
+

16

8
+

16

16
= 16 + 8 + 4 + 2 + 1 = 31

Solution 2
Using a common denominator inside the parentheses, we obtain

24

(
1 +

1

2
+

1

22
+

1

23
+

1

24

)
= 16

(
16

16
+

8

16
+

4

16
+

2

16
+

1

16

)
= 16

(
31

16

)
= 31

Answer: 31

2. Suppose that Daryl’s age now is d and Joe’s age now is j.
Four years ago, Daryl’s age was d− 4 and Joe’s age was j − 4.
In five years, Daryl’s age will be d + 5 and Joe’s age will be j + 5.
From the first piece of given information, d− 4 = 3(j− 4) and so d− 4 = 3j− 12 or d = 3j− 8.
From the second piece of given information, d+5 = 2(j+5) and so d+5 = 2j+10 or d = 2j+5.
Equating values of d, we obtain 3j − 8 = 2j + 5 which gives j = 13.
Substituting, we obtain d = 2(13) + 5 = 31.
Therefore, Daryl is 31 years old now.

Answer: 31

3. When the red die is rolled, there are 6 equally likely outcomes. Similarly, when the blue die is
rolled, there are 6 equally likely outcomes.
Therefore, when the two dice are rolled, there are 6 × 6 = 36 equally likely outcomes for the
combination of the numbers on the top face of each. (These outcomes are Red 1 and Blue 1,
Red 1 and Blue 2, Red 1 and Blue 3, . . ., Red 6 and Blue 6.)
The chart below shows these possibilities along with the sum of the numbers in each case:

Blue Die
1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8

Red 3 4 5 6 7 8 9
Die 4 5 6 7 8 9 10

5 6 7 8 9 10 11
6 7 8 9 10 11 12

Since the only perfect squares between 2 and 12 are 4 (which equals 22) and 9 (which equals 32),
then 7 of the 36 possible outcomes are perfect squares.
Since each entry in the table is equally likely, then the probability that the sum is a perfect
square is 7

36
.

Answer: 7
36
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4. Solution 1
We find the prime factorization of 18 800:

18 800 = 188 · 100 = 2 · 94 · 102 = 2 · 2 · 47 · (2 · 5)2 = 22 · 47 · 22 · 52 = 2452471

If d is a positive integer divisor of 18 800, it cannot have more than 4 factors of 2, more than 2
factors of 5, more than 1 factor of 47, and cannot include any other prime factors. Therefore,
if d is a positive integer divisor of 18 800, then d = 2a5b47c for some integers a, b and c with
0 ≤ a ≤ 4 and 0 ≤ b ≤ 2 and 0 ≤ c ≤ 1.
Since we want to count all divisors d that are divisible by 235 and 235 = 5× 47, then we need
d to contain at least one factor of each of 5 and 47, and so b ≥ 1 and c ≥ 1. (Since 0 ≤ c ≤ 1,
then c must equal 1.)
Let D be a positive integer divisor of 18 800 that is divisible by 235.
Then D is of the form d = 2a5b471 for some integers a and b with 0 ≤ a ≤ 4 and 1 ≤ b ≤ 2.
Since there are 5 possible values for a and 2 possible values for b, then there are 5 × 2 = 10
possible values for D.
Therefore, there are 10 positive divisors of 18 800 that are divisible by 235.

Solution 2
Any positive divisor of 18 800 that is divisible by 235 is of the form 235q for some positive
integer q. Thus, we want to count the number of positive integers q for which 235q divides
exactly into 18 800.
For 235q to divide exactly into 18 800, we need (235q)d = 18800 for some positive integer d.
Simplifying, we want qd = 18800

235
= 80 for some positive integer d.

This means that we want to count the positive integers q for which there is a positive integer
d such that qd = 80.
In other words, we want to count the positive divisors of 80.
We can do this using a similar method to that in (a), or since 80 is relatively small, we can list
the divisors: 1, 2, 4, 5, 8, 10, 16, 20, 40, 80.
There are 10 such positive divisors, so 18 800 has 10 positive divisors that are divisible by 235.

Answer: 10



2011 Canadian Senior Mathematics Contest Solutions Page 5

5. Since OF passes through the centre of the circle and is perpendicular to each of chord AB and
chord DC, then it bisects each of AB and DC. (That is, AE = EB and DF = FC.)
To see that AE = EB, we could join O to A and O to B. Since OA = OB (as they are radii),
OE is common to each of 4OAE and 4OBE, and each of these triangles is right-angled, then
the triangles are congruent and so AE = EB. Using a similar approach shows that DF = FC.
Since AE = EB and AB = 8, then AE = EB = 4.
Since DF = FC and DC = 6, then DF = FC = 3.
Join O to B and O to C.
Let r be the radius of the circle and let OE = x.
Since 4OEB is right-angled with OE = x, EB = 4 and OB = r,
then r2 = x2 + 42 by the Pythagorean Theorem.
Since OE = x and EF = 1, then OF = x + 1.
Since4OFC is right-angled with OF = x+1, FC = 3 and OC = r,
then r2 = (x + 1)2 + 32 by the Pythagorean Theorem.
Subtracting the first equation from the second, we obtain
0 = (x2 + 2x + 1 + 9)− (x2 + 16) or 0 = 2x− 6 or x = 3.
Since x = 3, then r2 = 32 + 42 = 25 and since r > 0, we get r = 5.

O

A B

CD

E

F

Answer: 5

6. Let R1, R2 and R3 represent the three rows, C1, C2 and C3 the three columns, D1 the diagonal
from the bottom left to the top right, and D2 the diagonal from the top left to the bottom
right. Since the sum of the numbers in R1 equals the sum of the numbers in D1, then

log a + log b + log x = log z + log y + log x

Simplifying, we get log a + log b = log z + log y and so log(ab) = log(yz) or ab = yz.

Thus, z =
ab

y
.

Since the sum of the numbers in C1 equals the sum of the numbers in R2, then

log a + p + log z = p + log y + log c

Simplifying, we get log a + log z = log y + log c and so log(az) = log(cy) or az = cy.

Thus, z =
cy

a
.

Since z =
ab

y
and z =

cy

a
, then we obtain

ab

y
=

cy

a
or y2 =

a2b

c
.

Since a, b, c, y > 0, then y =
ab1/2

c1/2
.

Since the sum of the numbers in C3 equals the sum of the numbers in D2, then

log x + log c + r = log a + log y + r

Simplifying, we get log x + log c = log a + log y and so log(xc) = log(ay) or xc = ay.

Thus, x =
ay

c
.

Therefore, xyz =
ay

c
· y · cy

a
= y3 =

(
ab1/2

c1/2

)3

=
a3b3/2

c3/2
.

(Note that there are many other ways to obtain this same answer.)

Answer: xyz =
a3b3/2

c3/2
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Part B

1. (a) The points A and B are the points where the parabola with equation y = 25−x2 intersects
the x-axis.
To find their coordinates, we solve the equation 0 = 25− x2 to get x2 = 25 or x = ±5.
Thus, A has coordinates (−5, 0) and B has coordinates (5, 0).
Therefore, AB = 5− (−5) = 10.

(b) Since ABCD is a rectangle, BC = AD and ∠DAB = 90◦.
Since BD = 26 and AB = 10, then by the Pythagorean Theorem,

AD =
√
BD2 − AB2 =

√
262 − 102 =

√
676− 100 =

√
576 = 24

since AD > 0.
Since BC = AD, then BC = 24.

(c) Since ABCD is a rectangle with sides parallel to the axes, then D and C are vertically
below A and B, respectively.
Since AD = BC = 24, A has coordinates (−5, 0) and B has coordinates (5, 0), then D
has coordinates (−5,−24) and C has coordinates (5,−24).
Thus, line segment DC lies along the line with equation y = −24.
Therefore, the points E and F are the points of intersection of the line y = −24 with the
parabola with equation y = 25− x2.
To find their coordinates, we solve −24 = 25− x2 to get x2 = 49 or x = ±7.
Thus, E and F have coordinates (−7,−24) and (7,−24) and so EF = 7− (−7) = 14.

2. (a) If x and y are positive integers with
2x + 11y

3x + 4y
= 1, then 2x + 11y = 3x + 4y or 7y = x.

We try x = 7 and y = 1.

In this case,
2x + 11y

3x + 4y
=

2(7) + 11(1)

3(7) + 4(1)
=

25

25
= 1, as required.

Therefore, the integers x = 7 and y = 1 have the required property.
(In fact, any pair of positive integers (x, y) with x = 7y will have the required property.)

(b) Suppose u =
a

b
and v =

c

d
for some positive integers a, b, c, d.

The average of u and v is
1

2
(u + v) =

1

2

(a
b

+
c

d

)
=

1

2

(
ad + bc

bd

)
=

ad + bc

2bd
.

Since u =
a

b
=

ax

bx
and v =

c

d
=

cy

dy
for all positive integers x and y, then each fraction of

the form
ax + cy

bx + dy
is a mediant of u and v.

Can we write
ad + bc

2bd
in the form

ax + cy

bx + dy
for some positive integers x and y?

Yes, we can. If x = d and y = b, then
ax + cy

bx + dy
=

ad + cb

bd + db
=

ad + bc

2bd
.

Thus, writing u =
ad

bd
and v =

bc

bd
gives us the mediant

ad + bc

bd + bd
=

ad + bc

2bd
, which equals

the average of u and v.
Therefore, the average of u and v is indeed a mediant of u and v.
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(c) Suppose that u and v are two positive rational numbers with u < v.

Any mediant m of u and v is of the form
a + c

b + d
where u =

a

b
and v =

c

d
for some positive

integers a, b, c, d.

Since u < v, then
a

b
<

c

d
and so ad < bc (since b, d > 0).

We need to show that u < m and that m < v.
To do this, we show that m− u > 0 and that v −m > 0.
Consider m− u:

m− u =
a + c

b + d
− a

b
=

b(a + c)− a(b + d)

b(b + d)
=

ab + bc− ab− ad

b(b + d)
=

bc− ad

b(b + d)

Since a, b, c, d > 0, then the denominator of this fraction is positive. Since bc > ad, then
the numerator of this fraction is positive.

Therefore, m− u =
bc− ad

b(b + d)
> 0, so m > u.

Consider v −m:

v −m =
c

d
− a + c

b + d
=

c(b + d)− d(a + c)

d(b + d)
=

bc + cd− ad− cd

d(b + d)
=

bc− ad

d(b + d)

Since a, b, c, d > 0, then the denominator of this fraction is positive. Since bc > ad, then
the numerator of this fraction is positive.

Therefore, v −m =
bc− ad

d(b + d)
> 0, so v > m.

Thus, u < m < v, as required.

3. (a) We list all of the possible products by starting with all of those beginning with a1 (that
is, with i = 1), then all of those beginning with a2, then all of those beginning with a3:

a1a2a3 = (−1) · (−1) · 1 = 1 a1a4a5 = (−1) · 1 · 1 = −1
a1a2a4 = (−1) · (−1) · 1 = 1 a2a3a4 = (−1) · 1 · 1 = −1
a1a2a5 = (−1) · (−1) · 1 = 1 a2a3a5 = (−1) · 1 · 1 = −1
a1a3a4 = (−1) · 1 · 1 = −1 a2a4a5 = (−1) · 1 · 1 = −1
a1a3a5 = (−1) · 1 · 1 = −1 a3a4a5 = 1 · 1 · 1 = 1

Of the ten products, 4 are equal to 1.

(b) Each product aiajak is equal to 1 or −1, depending on whether it includes an even number
of factors of −1 or an odd number of factors of −1.
If aiajak includes three 1s and zero (−1)s, it equals 1.
If aiajak includes two 1s and one (−1), it equals −1.
If aiajak includes one 1 and two (−1)s, it equals 1.
If aiajak includes zero 1s and three (−1)s, it equals −1.
Since the sequence includes m terms equal to −1 and p terms equal to 1, then

• the number of ways of choosing three 1s and zero (−1)s is

(
p

3

)(
m

0

)
,

• the number of ways of choosing two 1s and one (−1) is

(
p

2

)(
m

1

)
,

• the number of ways of choosing one 1 and two (−1)s is

(
p

1

)(
m

2

)
, and
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• the number of ways of choosing zero 1s and three (−1)s is

(
p

0

)(
m

3

)
.

Therefore, the number of products aiajak equal to 1 is

(
p

3

)(
m

0

)
+

(
p

1

)(
m

2

)
and the

number of products equal to −1 is

(
p

2

)(
m

1

)
+

(
p

0

)(
m

3

)
.

If exactly half of the products are equal to 1, then half are equal to −1, and so the number
of products of each kind are equal.
This property is equivalent to the following equations:(

p

3

)(
m

0

)
+

(
p

1

)(
m

2

)
=

(
p

2

)(
m

1

)
+

(
p

0

)(
m

3

)
p(p− 1)(p− 2)

3(2)(1)
· 1 + p · m(m− 1)

2(1)
=

p(p− 1)

2(1)
·m + 1 · m(m− 1)(m− 2)

3(2)(1)

(p3 − 3p2 + 2p) + 3pm(m− 1) = 3mp(p− 1) + (m3 − 3m2 + 2m)

p3 − 3p2 + 2p + 3m2p− 3mp = 3mp2 − 3mp + m3 − 3m2 + 2m

Each step so far is reversible so this last equation is equivalent to the desired property.
Grouping all terms on the left side and factoring, we obtain

p3 −m3 − 3(p2 −m2) + 2(p−m) + 3m2p− 3mp2 = 0

(p−m)(p2 + mp + m2)− 3(p−m)(p + m) + 2(p−m)− 3mp(p−m) = 0

(p−m)(p2 + mp + m2 − 3(p + m) + 2− 3mp) = 0

(p−m)(p2 − 3p− 2mp + m2 − 3m + 2) = 0

(We have used p3 −m3 = (p−m)(p2 + mp + m2) and p2 −m2 = (p−m)(p + m).)
Therefore, the desired property is equivalent to the condition that either p − m = 0 or
p2 − 3p− 2mp + m2 − 3m + 2 = 0.
We count the number of pairs (m, p) in each of these two cases. The first case is easier
than the second.

Case 1: p−m = 0
We want to count the number of pairs (m, p) of positive integers that satisfy

1 ≤ m ≤ p ≤ 1000 and m + p ≥ 3 and p−m = 0

If p −m = 0, then p = m. Since 1 ≤ m ≤ p ≤ 1000 and m + p ≥ 3, then the possible
pairs (m, p) are of the form (m, p) = (k, k) with k a positive integer ranging from k = 2
to k = 1000, inclusive. There are 999 such pairs.

Case 2: p2 − 3p− 2mp + m2 − 3m + 2 = 0
We want to count the number of pairs (m, p) of positive integers that satisfy

1 ≤ m ≤ p ≤ 1000 and m + p ≥ 3 and p2 − 3p− 2mp + m2 − 3m + 2 = 0

We start with this last equation. We rewrite it as a quadratic equation in p (with coeffi-
cients in terms of m):

p2 − p(2m + 3) + (m2 − 3m + 2) = 0
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By the quadratic formula, this equation is true if and only if

p =
(2m + 3)±

√
(2m + 3)2 − 4(m2 − 3m + 2)

2

=
(2m + 3)±

√
(4m2 + 12m + 9)− (4m2 − 12m + 8)

2

=
(2m + 3)±

√
24m + 1

2

Since m ≥ 1, then 24m + 1 ≥ 25 and so
√

24m + 1 ≥ 5.

This means that
(2m + 3)−

√
24m + 1

2
≤ (2m + 3)− 5

2
= m− 1.

In other words, if p =
(2m + 3)−

√
24m + 1

2
, then p ≤ m − 1. But p ≥ m, so this is

impossible.
Therefore, in Case 2 we are looking for pairs (m, p) of positive integers that satisfy

(I) 1 ≤ m ≤ p ≤ 1000 and (II) m + p ≥ 3 and (III) p =
(2m + 3) +

√
24m + 1

2

From (III), for p to be an integer, it is necessary that
√

24m + 1 be an integer (that is, for
24m + 1 to be a perfect square).
Since 24m + 1 is always an odd integer, then if 24m + 1 is a perfect square, it is an odd
perfect square.
Since 24m + 1 is one more than a multiple of 3 (because 24m is a multiple of 3), then
24m + 1 is not a multiple of 3.
Therefore, if m gives an integer value for p, then 24m + 1 is a perfect square that is not
divisible by 3.
So the question remains: Which odd perfect squares that are not divisible by 3 are of the
form 24m + 1?
In fact, every odd perfect square that is not a multiple of 3 is of the form 24m + 1. (We
will prove this fact at the very end of the solution.)
Therefore, the possible values of 24m+1 are all odd perfect squares that are not multiples
of 3. We will return to this.

We verify next that (II) is always true.
We can assume that m ≥ 1. From the formula for p in terms of m, we can see that

p ≥
(2(1) + 3) +

√
24(1) + 1

2
= 5, and so m + p ≥ 1 + 5 = 6, and so the restriction

m + p ≥ 3 is true.

We verify next that part of (I) is always true.

Note that p =
(2m + 3) +

√
24m + 1

2
≥ 2m

2
= m, so the restriction p ≥ m is true.

Therefore, we want to count the pairs (m, p) of positive integers with p ≤ 1000 and

p =
(2m + 3) +

√
24m + 1

2
.

From above, the values of m that work are exactly those for which 24m + 1 is an odd
perfect square that is not a multiple of 3.
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We make a table of possible odd perfect square values for 24m + 1 that are not multiples
of 3, and the resulting values of m and of p (from the formula above):

24m + 1 m p
52 = 25 1 5
72 = 49 2 7

112 = 121 5 12

...
...

...

1432 = 20449 852 925
1452 = 21025 876 950
1472 = 22201 925 1001

Since p > 1000 for this last row, we can stop. (Any larger value of 24m+ 1 will give larger
values of m and thus of p.)

We could have also solved the inequality
(2m + 3) +

√
24m + 1

2
≤ 1000 to obtain the re-

striction on m.

Finally, we need to count the pairs resulting from this table.
We do this by counting the number of odd perfect squares from 52 to 1452 inclusive that
are not multiples of 3.
This is equivalent to counting the number of odd integers from 5 to 145 that are not
multiples of 3.
In total, there are 71 odd integers from 5 to 145 inclusive, since we can add 2 a total of
70 times starting from 5 to get 145.
The odd multiples of 3 between 5 and 145 are 9, 15, 21, · · · , 135, 141. There are 23 of these,
since we can add 6 a total of 22 times starting from 9 to get 141.
Therefore, there are 71 − 23 = 48 odd integers that are not multiples of 3 from 5 to 145
inclusive. This means that there are 48 pairs (m, p) in this case.

In total, there are then 999 + 48 = 1047 pairs (m, p) that have the property that ex-
actly half of the products aiajak are equal to 1.

Lastly, we need to prove the unproven fact from above:

Every odd perfect square that is not a multiple of 3 is of the form 24m + 1

Proof
Suppose that k2 is an odd perfect square that is not a multiple of 3.
Since k2 is odd, then k is odd.
Since k2 is not a multiple of 3, then k is not a multiple of 3.
Since k is odd, then it has one of the forms k = 6q − 1 or k = 6q + 1 or k = 6q + 3 for
some integer q. (The form k = 6q + 5 is equivalent to the form k = 6q − 1.)
Since k is not a multiple of 3, then k cannot equal 6q + 3 (which is 3(2q + 1)).
Therefore, k = 6q − 1 or k = 6q + 1.
In the first case, k2 = (6q − 1)2 = 36q2 − 12q + 1 = 12(3q2 − q) + 1.
In the second case, k2 = (6q + 1)2 = 36q2 + 12q + 1 = 12(3q2 + q) + 1.
If q is an even integer, then 3q2 is even and so 3q2 + q and 3q2 − q are both even.
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If q is an odd integer, then 3q2 is odd and so 3q2 + q and 3q2 − q are both even.
If k2 = 12(3q2 + q) + 1, then since 3q2 + q is even, we can write 3q2 + q = 2x for some
integer x, and so k2 = 24x + 1.
If k2 = 12(3q2 − q) + 1, then since 3q2 − q is even, we can write 3q2 − q = 2y for some
integer y, and so k2 = 24y + 1.
In either case, k2 is one more than a multiple of 24, as required.


