An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario

2010 Hypatia Contest

Friday, April 9, 2010

Solutions

1. (a) The cost to fly is $\$ 0.10$ per kilometre plus a $\$ 100$ booking fee.

To fly 3250 km from A to B, the cost is $3250 \times 0.10+100=325+100=\$ 425$.
(b) Since $\triangle A B C$ is a right-angled triangle, then we may use the Pythagorean Theorem.

Thus, $A B^{2}=B C^{2}+C A^{2}$, and so $B C^{2}=A B^{2}-C A^{2}=3250^{2}-3000^{2}=1562500$, and $B C=1250 \mathrm{~km}$ (since $B C>0$).
Piravena travels a distance of $3250+1250+3000=7500 \mathrm{~km}$ for her complete trip.
(c) To fly from B to C, the cost is $1250 \times 0.10+100=\$ 225$.

To bus from B to C, the cost is $1250 \times 0.15=\$ 187.50$.
Since Piravena chooses the least expensive way to travel, she will bus from B to C.
To fly from C to A, the cost is $3000 \times 0.10+100=\$ 400$.
To bus from C to A, the cost is $3000 \times 0.15=\$ 450$.
Since Piravena chooses the least expensive way to travel, she will fly from C to A.
To check, the total cost of the trip would be $\$ 425+\$ 187.50+\$ 400=\$ 1012.50$ as required.
2. (a) Substituting $x=6$, then $f(x)-f(x-1)=4 x-9$ becomes $f(6)-f(5)=4 \times 6-9$.

Since $f(5)=18$, then $f(6)-18=24-9$ or $f(6)-18=15$ and $f(6)=33$.
(b) Substituting $x=5$, then $f(x)-f(x-1)=4 x-9$ becomes $f(5)-f(4)=4 \times 5-9$.

Since $f(5)=18$, then $18-f(4)=20-9$ or $18-f(4)=11$ and $f(4)=7$.
Substituting $x=4$, then $f(x)-f(x-1)=4 x-9$ becomes $f(4)-f(3)=4 \times 4-9$.
Since $f(4)=7$, then $7-f(3)=16-9$ or $7-f(3)=7$ and $f(3)=0$.
(c) Since $f(5)=18$, then $2\left(5^{2}\right)+5 p+q=18$, or $50+5 p+q=18$ and so $5 p+q=-32$.

Since $f(3)=0$, then $2\left(3^{2}\right)+3 p+q=0$, or $18+3 p+q=0$ and so $3 p+q=-18$.
We solve the system of equations:

$$
\begin{aligned}
& 5 p+q=-32 \\
& 3 p+q=-18
\end{aligned}
$$

Subtracting the second equation from the first gives $2 p=-14$ or $p=-7$.
Substituting $p=-7$ into the first equation gives $5(-7)+q=-32$, or $-35+q=-32$ and $q=3$.
Therefore if $f(x)=2 x^{2}+p x+q$, then $p=-7$ and $q=3$.
3. (a) Since $\triangle A B E$ is equilateral, then $\angle A B E=60^{\circ}$.

Therefore, $\angle P B C=\angle A B C-\angle A B E=90^{\circ}-60^{\circ}=30^{\circ}$.
Since $A B=B C$, then $\triangle A B C$ is a right isosceles triangle and $\angle B A C=\angle B C A=45^{\circ}$.
Then, $\angle B C P=\angle B C A=45^{\circ}$ and

$$
\angle B P C=180^{\circ}-\angle P B C-\angle B C P=180^{\circ}-30^{\circ}-45^{\circ}=105^{\circ} .
$$

(b) Solution 1

In $\triangle P B Q, \angle P B Q=30^{\circ}$ and $\angle B Q P=90^{\circ}$, thus $\angle B P Q=60^{\circ}$.
Therefore, $\triangle P B Q$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with $P Q: P B: B Q=1: 2: \sqrt{3}$.
Since $\frac{P Q}{B Q}=\frac{1}{\sqrt{3}}$, then $\frac{x}{B Q}=\frac{1}{\sqrt{3}}$ and $B Q=\sqrt{3} x$.
Solution 2
In $\triangle P Q C, \angle Q C P=45^{\circ}$ and $\angle P Q C=90^{\circ}$, thus $\angle C P Q=45^{\circ}$.
Therefore, $\triangle P Q C$ is isosceles and $Q C=P Q=x$.
Since $B C=4$, then $B Q=B C-Q C=4-x$.
(c) Solution 1

In $\triangle P Q C, \angle Q C P=45^{\circ}$ and $\angle P Q C=90^{\circ}$, thus $\angle C P Q=45^{\circ}$.
Therefore, $\triangle P Q C$ is isosceles and $Q C=P Q=x$.
Since $B C=4$, then $B C=B Q+Q C=\sqrt{3} x+x=4$ or $x(\sqrt{3}+1)=4$ and $x=\frac{4}{\sqrt{3}+1}$.
Rationalizing the denominator gives $x=\frac{4}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{4(\sqrt{3}-1)}{3-1}=\frac{4(\sqrt{3}-1)}{2}=2(\sqrt{3}-1)$.
Solution 2
In $\triangle P B Q, \angle P B Q=30^{\circ}$ and $\angle B Q P=90^{\circ}$, thus $\angle B P Q=60^{\circ}$.
Therefore, $\triangle P B Q$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with $P Q: P B: B Q=1: 2: \sqrt{3}$.
Since $\frac{P Q}{B Q}=\frac{1}{\sqrt{3}}$, then $\frac{x}{4-x}=\frac{1}{\sqrt{3}}$ or $\sqrt{3} x=4-x$ or $\sqrt{3} x+x=4$, and $x(\sqrt{3}+1)=4$ so $x=\frac{4}{\sqrt{3}+1}$.
Rationalizing the denominator gives $x=\frac{4}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{4(\sqrt{3}-1)}{3-1}=\frac{4(\sqrt{3}-1)}{2}=2(\sqrt{3}-1)$.
(d) Solution 1

We adopt the notation $|\triangle X Y Z|$ to represent the area of triangle $X Y Z$.
Then, $|\triangle A P E|=|\triangle A B E|-|\triangle A B P|$.
Since $\triangle A B E$ is equilateral, $B E=E A=A B=4$ and the altitude from E to $A B$ bisects side $A B$ at R as shown. Thus, $A R=R B=2$ and by the Pythagorean Theorem $E R^{2}=B E^{2}-R B^{2}=4^{2}-2^{2}=12$ or $E R=\sqrt{12}=2 \sqrt{3}$, since $E R>0$.
Therefore, the area of $\triangle A B E$ is $\frac{1}{2}(A B)(E R)$,
or $\frac{1}{2}(4)(2 \sqrt{3})=4 \sqrt{3}$.
In $\triangle A B P$, construct the altitude from P to S on $A B$.
Then $P S \perp A B$ and $Q B \perp A B$, so $P S \| Q B$.

Also, $S B \perp Q B$ and $P Q \perp Q B$, so $S B \| P Q$.
Thus, $S B Q P$ is a rectangle and $P S=Q B$.
From (b) and (c), $Q B=4-x=4-2(\sqrt{3}-1)=6-2 \sqrt{3}$.
Therefore, $|\triangle A B P|=\frac{1}{2}(A B)(P S)=\frac{1}{2}(4)(6-2 \sqrt{3})=2(6-2 \sqrt{3})=12-4 \sqrt{3}$.
Then, $|\triangle A P E|=4 \sqrt{3}-(12-4 \sqrt{3})=4 \sqrt{3}-12+4 \sqrt{3}=8 \sqrt{3}-12$.
Solution 2
We adopt the notation $|\triangle X Y Z|$ to represent the area of triangle $X Y Z$.
Then, $|\triangle A P E|=|\triangle A B E|-|\triangle A B P|$.
However, $|\triangle A B P|=|\triangle A B C|-|\triangle B P C|$.
Thus, $|\triangle A P E|=|\triangle A B E|-(|\triangle A B C|-|\triangle B P C|)=|\triangle A B E|+|\triangle B P C|-|\triangle A B C|$.
Since $\triangle A B E$ is equilateral, $B E=E A=A B=4$ and the altitude from E to $A B$ bisects side $A B$ at R as shown.
Thus, $\triangle E R B$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with $E R: R B=\sqrt{3}: 1$ or $E R=(R B) \sqrt{3}=2 \sqrt{3}$.
Therefore, $|\triangle A B E|=\frac{1}{2}(A B)(E R)=\frac{1}{2}(4)(2 \sqrt{3})=4 \sqrt{3}$.
Since $P Q$ is an altitude of $\triangle B P C,|\triangle B P C|=\frac{1}{2}(B C)(P Q)=\frac{1}{2}(4)(2 \sqrt{3}-2)=4 \sqrt{3}-4$.
In triangle $A B C, \angle A B C=90^{\circ}$.
Thus, $|\triangle A B C|=\frac{1}{2}(A B)(B C)=\frac{1}{2}(4)(4)=8$.
Thus, $|\triangle A P E|=|\triangle A B E|+|\triangle B P C|-|\triangle A B C|=(4 \sqrt{3})+(4 \sqrt{3}-4)-8=8 \sqrt{3}-12$.
4. (a) We solve by factoring,

$$
\begin{aligned}
x^{4}-6 x^{2}+8 & =0 \\
\left(x^{2}-4\right)\left(x^{2}-2\right) & =0
\end{aligned}
$$

Therefore, $x^{2}=4$ or $x^{2}=2$, and so $x= \pm 2$ or $x= \pm \sqrt{2}$.
The real values of x satisfying $x^{4}-6 x^{2}+8=0$ are $x=-2,2,-\sqrt{2}$, and $\sqrt{2}$.
(b) We want the smallest positive integer N for which,

$$
\begin{aligned}
x^{4}+2010 x^{2}+N & =\left(x^{2}+r x+s\right)\left(x^{2}+t x+u\right) \\
x^{4}+2010 x^{2}+N & =x^{4}+t x^{3}+u x^{2}+r x^{3}+r t x^{2}+r u x+s x^{2}+s t x+s u \\
x^{4}+2010 x^{2}+N & =x^{4}+t x^{3}+r x^{3}+u x^{2}+r t x^{2}+s x^{2}+r u x+s t x+s u \\
x^{4}+2010 x^{2}+N & =x^{4}+(t+r) x^{3}+(u+r t+s) x^{2}+(r u+s t) x+s u
\end{aligned}
$$

Equating the coefficients from the left and right sides of this equation we have, $t+r=0, u+r t+s=2010, r u+s t=0$, and $s u=N$.
From the first equation we have $t=-r$.
If we substitute $t=-r$ into the third equation, then $r u-r s=0$ or $r(u-s)=0$.
Since $r \neq 0$, then $u-s=0$ or $u=s$.
Thus, from the fourth equation we have $N=s u=u^{2}$.
That is, to minimize N we need to minimize u^{2}.
If we substitute $t=-r$ and $s=u$ into the second equation, then $u+r t+s=2010$ becomes $u+r(-r)+u=2010$ or $2 u-r^{2}=2010$ and so $u=\frac{2010+r^{2}}{2}$.
Thus, $u>0$. So to minimize u^{2}, we minimize u or equivalently, we minimize r.
Since u and r are integers and $r \neq 0, u$ is minimized when $r= \pm 2(r$ must be even) or $u=\frac{2014}{2}=1007$.
Therefore, the smallest positive integer N for which $x^{4}+2010 x^{2}+N$ can be factored as $\left(x^{2}+r x+s\right)\left(x^{2}+t x+u\right)$ with r, s, t, u integers and $r \neq 0$ is $N=u^{2}=1007^{2}=1014049$.
(c) Replacing the coefficient 2010 with M in part (b) and again equating coefficients, we have the similar four equations $t+r=0, u+r t+s=M, r u+s t=0$, and $s u=N$.
Thus we have,

$$
\begin{aligned}
N-M & =s u-(u+r t+s) \\
37 & =u^{2}-\left(2 u-r^{2}\right) \\
37 & =u^{2}-2 u+r^{2} \\
37+1 & =u^{2}-2 u+1+r^{2} \\
38 & =(u-1)^{2}+r^{2}
\end{aligned}
$$

and so $r= \pm \sqrt{38-(u-1)^{2}}$.
In the table below we attempt to find integer solutions for u and r :

u	$(u-1)^{2}$	r
1	0	$\pm \sqrt{38}$
0 or 2	1	$\pm \sqrt{37}$
-1 or 3	4	$\pm \sqrt{34}$
-2 or 4	9	$\pm \sqrt{29}$
-3 or 5	16	$\pm \sqrt{22}$
-4 or 6	25	$\pm \sqrt{13}$
-5 or 7	36	$\pm \sqrt{2}$

We see that for all choices of u above, r is not an integer.
For any other integer choice of u not listed, $(u-1)^{2}>38$ and then $38-(u-1)^{2}<0$, so there are no real solutions for r.
Thus, when u is an integer, r cannot be, so u and r cannot both be integers. Therefore, $x^{4}+M x^{2}+N$ cannot be factored as in (b) for any integers M and N with $N-M=37$. Note: Alternatively, we could have stated that $(u-1)^{2}+r^{2}$ represents the sum of two perfect squares. Since no pair of perfect squares (from the list $0,1,4,9,16,25,36$) sums to 38 , then $(u-1)^{2}+r^{2} \neq 38$ for any integers u and r.

