2008 Hypatia Contest (Grade 11)
 Wednesday, April 16, 2008

1. For numbers a and b, the notation $a \nabla b$ means $2 a+b^{2}+a b$.

For example, $1 \nabla 2=2(1)+2^{2}+(1)(2)=8$.
(a) Determine the value of $3 \nabla 2$.
(b) If $x \nabla(-1)=8$, determine the value of x.
(c) If $4 \nabla y=20$, determine the two possible values of y.
(d) If $(w-2) \nabla w=14$, determine all possible values of w.
2. (a) Determine the equation of the line through the points $A(7,8)$ and $B(9,0)$.
(b) Determine the coordinates of P, the point of intersection of the line $y=2 x-10$ and the line through A and B.
(c) Is P closer to A or to B ? Explain how you obtained your answer.
3. In the diagram, $A B C D$ is a trapezoid with $A D$ parallel to $B C$ and $B C$ perpendicular to $A B$. Also, $A D=6, A B=20$, and $B C=30$.
(a) Determine the area of trapezoid $A B C D$.
(b) There is a point K on $A B$ such that the area of $\triangle K B C$ equals the area of quadrilateral $K A D C$. Determine the length of $B K$.
(c) There is a point M on $D C$ such that the area of $\triangle M B C$
 equals the area of quadrilateral $M B A D$. Determine the length of $M C$.
4. The peizi-sum of a sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is formed by adding the products of all of the pairs of distinct terms in the sequence. For example, the peizi-sum of the sequence $a_{1}, a_{2}, a_{3}, a_{4}$ is $a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}$.
(a) The peizi-sum of the sequence $2,3, x, 2 x$ is -7 . Determine the possible values of x.
(b) A sequence has 100 terms. Of these terms, m are equal to 1 and n are equal to -1 . The rest of the terms are equal to 2 . Determine, in terms of m and n, the number of pairs of distinct terms that have a product of 1 .
(c) A sequence has 100 terms, with each term equal to either 2 or -1 . Determine, with justification, the minimum possible peizi-sum of the sequence.

