Canadian

Mathematics

 CompetitionAn activity of the Centre for Education in Mathematics and Computing,
University of Waterloo, Waterloo, Ontario

2007 Fryer Contest Wednesday, April 18, 2007

Solutions

1. (a) Since Rectangle 3 has 4 rows of squares, then Rectangle 4 has 5 rows.

Since Rectangle 3 has 7 columns of squares, then Rectangle 4 has 9 columns.
Therefore, Rectangle 4 has $5 \times 9=45$ squares.
(b) Since Rectangle 4 has 5 rows, its height is 5 .

Since Rectangle 4 has 9 columns, its width is 9 .
Therefore, the perimeter of Rectangle 4 is $2(5)+2(9)=28$.
(c) Since Rectangle 4 has 5 rows of squares, then Rectangle 7 has $5+3=8$ rows.

Since Rectangle 4 has 9 columns of squares, then Rectangle 7 has $9+2(3)=15$ columns. Since Rectangle 7 has 8 rows and 15 columns, it is 8 by 15 , so has perimeter $2(8)+2(15)=$ 46.
(d) Solution 1

Rectangle 7 is 8 by 15 and so has perimeter $2(8)+2(15)=46$.
Let us try a bigger rectangle.
Rectangle 17 has $8+10=18$ rows and $15+2(10)=35$ columns, so is 18 by 35 and has perimeter $2(18)+2(35)=106$.
Let us try a rectangle that is still bigger.
Rectangle 27 has $18+10=28$ rows and $35+2(10)=55$ columns, so is 28 by 55 and has perimeter $2(28)+2(55)=166$.
We are getting close!
Rectangle 28 has 29 rows and 57 columns, so has perimeter $2(29)+2(57)=172$.
Rectangle 29 has 30 rows and 59 columns, so has perimeter $2(30)+2(59)=178$.
Therefore, $n=29$.
(Notice that this is the only answer as moving more steps along in the sequence makes the rectangles larger.)

Solution 2

Rectangle 7 is 8 by 15 and so has perimeter $2(8)+2(15)=46$.
When we move to Rectangle 8 , the height increases by 1 and the width increases by 2 .
This increase the perimeter by $2(1)+2(2)=6$.
The same increase in perimeter occurs at each step in the sequence.
Since $178-46=132=22(6)$, then we must move 22 steps beyond Rectangle 7 to get from a perimeter of 46 to a perimeter of 178 .
Thus, Rectangle 29 has a perimeter of 178 , so $n=29$.

Solution 3

Rectangle 1 has 1 more row than its number, and the number of rows increases by 1 from each step to the next.
Therefore, Rectangle n has $n+1$ rows.
Rectangle 1 has 3 columns (which is 1 more than twice its number), and the number of columns increases by 2 from each step to the next.
Therefore, Rectangle n has $2 n+1$ columns.
A formula for the perimeter of Rectangle n is $2(n+1)+2(2 n+1)=2 n+2+4 n+2=6 n+4$.
For a perimeter of 178 , we must have $6 n+4=178$ or $6 n=174$ or $n=29$.
Therefore, Rectangle 29 has a perimeter of 178 .
2. (a) Jim buys $5+2+3=10$ tickets.

The total cost of the tickets is $5(\$ 25)+2(\$ 10)+3(\$ 5)=\$ 160$.

Therefore, the average cost of the tickets was $\frac{\$ 160}{10}=\$ 16$.
(b) Since Mike buys 8 tickets at an average cost of $\$ 12$, their total cost is $8 \times \$ 12=\$ 96$.

When he buys 5 more platinum tickets, he pays $5 \times \$ 25=\$ 125$.
In total, Mike thus pays $\$ 96+\$ 125=\$ 221$ for 13 tickets.
Therefore, the new average cost of the tickets is $\frac{\$ 221}{13}=\$ 17$.

(c) Solution 1

The first 10 tickets that Ophelia buys at an average cost of $\$ 14$ have a total cost of $10 \times \$ 14=\$ 140$.
When she buys n more platinum tickets, she pays $25 n$ dollars for these additional tickets. In total, she has now paid $140+25 n$ dollars for $10+n$ tickets.
Since the average price of the tickets that she has bought is $\$ 20$, then

$$
\begin{aligned}
\frac{140+25 n}{10+n} & =20 \\
140+25 n & =20(10+n) \\
140+25 n & =200+20 n \\
5 n & =60 \\
n & =12
\end{aligned}
$$

so she buys 12 more platinum tickets.
Solution 2
For the first ten tickets that Ophelia buys, the average cost is $\$ 6$ less per ticket than the final average cost of $\$ 20$.
Therefore, she has paid $10 \times \$ 6=\$ 60$ less in total than she would have if she had paid $\$ 20$ on average for these tickets.
For a final average of $\$ 20$ per ticket, the new platinum tickets must cost in total $\$ 60$ more than an average of $\$ 20$.
Since each platinum ticket costs $\$ 5$ more on average than the final average, then she buys $\$ 60 \div \$ 5=12$ more platinum tickets.
3. (a) For $9924661 A 6$ to be divisible by 8 , we must have $1 A 6$ divisible by 8 .

We check each of the possibilities, using a calculator or by checking by hand:
106 is not divisible by 8,116 is not divisible by 8,126 is not divisible by 8 , 136 is divisible by 8 ,
146 is not divisible by 8,156 is not divisible by 8,166 is not divisible by 8 , 176 is divisible by 8 ,
186 is not divisible by 8,196 is not divisible by 8
Therefore, the possible values of A are 3 and 7 .
(b) For $D 767 E 89$ to be divisible by 9 , we must have $D+7+6+7+E+8+9=37+D+E$ divisible by 9 .
Since D and E are each a single digit then each is between 0 and 9 , so $D+E$ is between 0 and 18.
Therefore, $37+D+E$ is between 37 and 55 .
The numbers between 37 and 55 that are divisible by 9 are 45 and 54 .

If $37+D+E=45$, then $D+E=8$.
If $37+D+E=54$, then $D+E=17$.
Therefore, the possible values of $D+E$ are 8 and 17 .
(c) For $541 G 5072 H 6$ to be divisible by 72 , it must be divisible by 8 and by 9 .

It is easier to check for divisibility by 8 first, since this will allow us to determine a small number of possibilities for H.
For $541 G 5072 H 6$ to be divisible by 8 , we must have $2 H 6$ divisible by 8 .
Going through the possibilities as in part (a), we can find that $2 H 6$ is divisible by 8 when $H=1,5,9$ (that is, 216, 256 and 296 are divisible by 8 while $206,226,236,246,266,276$, 286 are not divisible by 8).
We must now use each possible value of H to find the possible values of G that make $541 G 5072 H 6$ divisible by 9 .
First, $H=1$. What value(s) of G make $541 G 507216$ divisible by 9 ?
In this case, we need $5+4+1+G+5+0+7+2+1+6=31+G$ divisible by 9 .
Since G is between 0 and 9 , then $31+G$ is between 31 and 40 , so must be equal to 36 if it is divisible by 9 . Thus, $G=5$.
Next, $H=5$. What value(s) of G make $541 G 507256$ divisible by 9 ?
In this case, we need $5+4+1+G+5+0+7+2+5+6=35+G$ divisible by 9 .
Since G is between 0 and 9 , then $35+G$ is between 35 and 44 , so must be equal to 36 if it is divisible by 9 . Thus, $G=1$.
Last, $H=9$. What value(s) of G make $541 G 507296$ divisible by 9 ?
In this case, we need $5+4+1+G+5+0+7+2+9+6=39+G$ divisible by 9 .
Since G is between 0 and 9 , then $39+G$ is between 39 and 48 , so must be equal to 45 if it is divisible by 9 . Thus, $G=6$.
Therefore, the possible pairs of values are $H=1$ and $G=5, H=5$ and $G=1$, and $H=9$ and $G=6$.
(Note that we could have combined the analysis of these last three cases.)
4. (a) Solution 1

By the Pythagorean Theorem, $Y Z^{2}=Y X^{2}+X Z^{2}=60^{2}+80^{2}=3600+6400=10000$, so $Y Z=100$.
(We could also have found $Y Z$ without using the Pythagorean Theorem by noticing that $\triangle X Y Z$ is a right-angled triangle with its right-angle at X and $X Y=60=3(20)$ and $X Z=80=4(20)$. This means that $\triangle X Y Z$ is similar to a 3-4-5 triangle, so has $Y Z=5(20)=100$.)
Since $\triangle Y X Z$ is right-angled at X, its area is $\frac{1}{2}(60)(80)=2400$.
Since $X W$ is perpendicular to $Y Z$, then the area of $\triangle Y X Z$ is also equal to $\frac{1}{2}(100)(X W)=50 X W$.
Therefore, $50 X W=2400$, so $X W=48$.
By the Pythagorean Theorem, $W Z^{2}=80^{2}-48^{2}=6400-2304=4096$.
Thus, $W Z=\sqrt{4096}=64$.

Solution 2

By the Pythagorean Theorem, $Y Z^{2}=Y X^{2}+X Z^{2}=60^{2}+80^{2}=3600+6400=10000$, so $Y Z=100$.
Let $W Z=a$. Then $Y W=100-a$.
Let $X W=h$.
By the Pythagorean Theorem in $\triangle X W Y$, we have $(100-a)^{2}+h^{2}=60^{2}$.

By the Pythagorean Theorem in $\triangle X W Z$, we have $a^{2}+h^{2}=80^{2}$.
Subtracting the first of these equations from the second, we obtain

$$
\begin{aligned}
a^{2}-(100-a)^{2} & =80^{2}-60^{2} \\
a^{2}-\left(10000-200 a+a^{2}\right) & =6400-3600 \\
200 a-10000 & =2800 \\
200 a & =12800 \\
a & =64
\end{aligned}
$$

Therefore, $W Z=64$.
(b) Let $O C=c, O D=d$ and $O H=h$.

Note that $O H$ is perpendicular to the field, so $O H$ is perpendicular to $O C$ and to $O D$. Also, since $O D$ points east and $O C$ points south, then $O D$ is perpendicular to $O C$.
Since $H C=150$, then $h^{2}+c^{2}=150^{2}$ by the Pythagorean Theorem.
Since $H D=130$, then $h^{2}+d^{2}=130^{2}$.
Since $C D=140$, then $c^{2}+d^{2}=140^{2}$.
Adding the first two equations, we obtain $2 h^{2}+c^{2}+d^{2}=150^{2}+130^{2}$.
Since $c^{2}+d^{2}=140^{2}$, then

$$
\begin{aligned}
2 h^{2}+140^{2} & =150^{2}+130^{2} \\
2 h^{2} & =150^{2}+130^{2}-140^{2} \\
2 h^{2} & =19800 \\
h^{2} & =9900 \\
h & =\sqrt{9900}=30 \sqrt{11}
\end{aligned}
$$

Therefore, the height of the balloon above the field is $30 \sqrt{11} \approx 99.5 \mathrm{~m}$.
(c) To save the most rope, we must have $H P$ having minimum length.

For $H P$ to have minimum length, $H P$ must be perpendicular to $C D$.

(Among other things, we can see from this diagram that sliding P away from the perpendicular position does make $H P$ longer.)
In the diagram, $H C=150, H D=130$ and $C D=140$.
Let $H P=x$ and $P D=a$. Then $C P=140-a$.
By the Pythagorean Theorem in $\triangle H P C, x^{2}+(140-a)^{2}=150^{2}$.
By the Pythagorean Theorem in $\triangle H P D, x^{2}+a^{2}=130^{2}$.
Subtracting the second equation from the first, we obtain

$$
\begin{aligned}
(140-a)^{2}-a^{2} & =150^{2}-130^{2} \\
\left(19600-280 a+a^{2}\right)-a^{2} & =5600 \\
19600-280 a & =5600 \\
280 a & =14000 \\
a & =50
\end{aligned}
$$

Therefore, $x^{2}+90^{2}=150^{2}$ or $x^{2}=150^{2}-90^{2}=22500-8100=14400$ so $x=120$.
So the shortest possible rope that we can use is 120 m , which saves $130+150-120=160 \mathrm{~m}$ of rope.

