Canadian Mathematics Competition

An activity of the Centre for Education
in Mathematics and Computing,
University of Waterloo, Waterloo, Ontario

2007 Euclid Contest
 Tuesday, April 17, 2007

Solutions

1. (a) Since $(a-1, a+1)$ lies on the line $y=2 x-3$, then $a+1=2(a-1)-3$ or $a+1=2 a-5$ or $a=6$.
(b) Solution 1

To get from P to Q, we move 3 units right and 4 units up.
Since $P Q=Q R$ and R lies on the line through Q, then we must use the same motion to get from Q to R.
Therefore, to get from $Q(0,4)$ to R, we move 3 units right and 4 units up, so the coordinates of R are (3, 8).

Solution 2

The line through $P(-3,0)$ and $Q(0,4)$ has slope $\frac{4-0}{0-(-3)}=\frac{4}{3}$ and y-intercept 4 , so has equation $y=\frac{4}{3} x+4$.
Thus, R has coordinates $\left(a, \frac{4}{3} a+4\right)$ for some $a>0$.
Since $P Q=Q R$, then $P Q^{2}=Q R^{2}$, so

$$
\begin{aligned}
(-3)^{2}+4^{2} & =a^{2}+\left(\frac{4}{3} a+4-4\right)^{2} \\
25 & =a^{2}+\frac{16}{9} a^{2} \\
\frac{25}{9} a^{2} & =25 \\
a^{2} & =9
\end{aligned}
$$

so $a=3$ since $a>0$.
Thus, R has coordinates $\left(3, \frac{4}{3}(3)+4\right)=(3,8)$.
(c) Since $O P=9$, then the coordinates of P are $(9,0)$.

Since $O P=9$ and $O A=15$, then by the Pythagorean Theorem,

$$
A P^{2}=O A^{2}-O P^{2}=15^{2}-9^{2}=144
$$

so $A P=12$.
Since P has coordinates $(9,0)$ and A is 12 units directly above P, then A has coordinates $(9,12)$.
Since $P B=4$, then B has coordinates $(13,0)$.
The line through $A(9,12)$ and $B(13,0)$ has slope $\frac{12-0}{9-13}=-3$ so, using the point-slope form, has equation $y-0=-3(x-13)$ or $y=-3 x+39$.
2. (a) Since $\cos (\angle B A C)=\frac{A B}{A C}$ and $\cos (\angle B A C)=\frac{5}{13}$ and $A B=10$, then $A C=\frac{13}{5} A B=26$.

Since $\triangle A B C$ is right-angled at B, then by the Pythagorean Theorem, $B C^{2}=A C^{2}-A B^{2}=26^{2}-10^{2}=576$ so $B C=24$ since $B C>0$.
Therefore, $\tan (\angle A C B)=\frac{A B}{B C}=\frac{10}{24}=\frac{5}{12}$.
(b) Since $2 \sin ^{2} x+\cos ^{2} x=\frac{25}{16}$ and $\sin ^{2} x+\cos ^{2} x=1$ (so $\left.\cos ^{2} x=1-\sin ^{2} x\right)$, then we get

$$
\begin{aligned}
2 \sin ^{2} x+\left(1-\sin ^{2} x\right) & =\frac{25}{16} \\
\sin ^{2} x & =\frac{25}{16}-1 \\
\sin ^{2} x & =\frac{9}{16} \\
\sin x & = \pm \frac{3}{4}
\end{aligned}
$$

so $\sin x=\frac{3}{4}$ since $\sin x>0$ because $0^{\circ}<x<90^{\circ}$.
(c) Since $\triangle A B C$ is isosceles and right-angled, then $\angle B A C=45^{\circ}$.

Also, $A C=\sqrt{2} A B=\sqrt{2}(2 \sqrt{2})=4$.
Since $\angle E A B=75^{\circ}$ and $\angle B A C=45^{\circ}$, then $\angle C A E=\angle E A B-\angle B A C=30^{\circ}$.
Since $\triangle A E C$ is right-angled and has a 30° angle, then $\triangle A E C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
Thus, $E C=\frac{1}{2} A C=2$ (since $E C$ is opposite the 30° angle) and $A E=\frac{\sqrt{3}}{2} A C=2 \sqrt{3}$ (since $A E$ is opposite the 60° angle).
In $\triangle C D E, E D=D C$ and $\angle E D C=60^{\circ}$, so $\triangle C D E$ is equilateral.
Therefore, $E D=C D=E C=2$.
Overall, the perimeter of $A B C D E$ is

$$
A B+B C+C D+D E+E A=2 \sqrt{2}+2 \sqrt{2}+2+2+2 \sqrt{3}=4+4 \sqrt{2}+2 \sqrt{3}
$$

3. (a) From the given information, the first term in the sequence is 2007 and each term starting with the second can be determined from the previous term.
The second term is $2^{3}+0^{3}+0^{3}+7^{3}=8+0+0+343=351$.
The third term is $3^{3}+5^{3}+1^{3}=27+125+1=153$.
The fourth term is $1^{3}+5^{3}+3^{3}=27+125+1=153$.
Since two consecutive terms are equal, then every term thereafter will be equal, because each term depends only on the previous term and a term of 153 always makes the next term 153.
Thus, the 2007th term will be 153.
(b) The nth term of sequence A is $n^{2}-10 n+70$.

Since sequence B is arithmetic with first term 5 and common difference 10, then the nth term of sequence B is equal to $5+10(n-1)=10 n-5$. (Note that this formula agrees with the first few terms.)
For the nth term of sequence A to be equal to the nth term of sequence B , we must have

$$
\begin{aligned}
n^{2}-10 n+70 & =10 n-5 \\
n^{2}-20 n+75 & =0 \\
(n-5)(n-15) & =0
\end{aligned}
$$

Therefore, $n=5$ or $n=15$. That is, 5 th and 15 th terms of sequence A and sequence B are equal to each other.
4. (a) Solution 1

Rearranging and then squaring both sides,

$$
\begin{aligned}
2+\sqrt{x-2} & =x-2 \\
\sqrt{x-2} & =x-4 \\
x-2 & =(x-4)^{2} \\
x-2 & =x^{2}-8 x+16 \\
0 & =x^{2}-9 x+18 \\
0 & =(x-3)(x-6)
\end{aligned}
$$

so $x=3$ or $x=6$.
We should check both solutions, because we may have introduced extraneous solutions by squaring.
If $x=3$, the left side equals $2+\sqrt{1}=3$ and the right side equals 1 , so $x=3$ must be rejected.
If $x=6$, the left side equals $2+\sqrt{4}=4$ and the right side equals 4 , so $x=6$ is the only solution.

Solution 2

Suppose $u=\sqrt{x-2}$.
The equation becomes $2+u=u^{2}$ or $u^{2}-u-2=0$ or $(u-2)(u+1)=0$.
Therefore, $u=2$ or $u=-1$.
But we cannot have $\sqrt{x-2}=-1$ (as square roots are always non-negative).
Therefore, $\sqrt{x-2}=2$ or $x-2=4$ or $x=6$.
We can check as in Solution 1 that $x=6$ is indeed a solution.

(b) Solution 1

From the diagram, the parabola has x-intercepts $x=3$ and $x=-3$.
Therefore, the equation of the parabola is of the form $y=a(x-3)(x+3)$ for some real number a.
Triangle $A B C$ can be considered as having base $A B$ (of length $3-(-3)=6$) and height $O C$ (where O is the origin).
Suppose C has coordinates $(0,-c)$. Then $O C=c$.
Thus, the area of $\triangle A B C$ is $\frac{1}{2}(A B)(O C)=3 c$. But we know that the area of $\triangle A B C$ is 54 , so $3 c=54$ or $c=18$.
Since the parabola passes through $C(0,-18)$, then this point must satisfy the equation of the parabola.
Therefore, $-18=a(0-3)(0+3)$ or $-18=-9 a$ or $a=2$.
Thus, the equation of the parabola is $y=2(x-3)(x+3)=2 x^{2}-18$.

Solution 2

Triangle $A B C$ can be considered as having base $A B$ (of length $3-(-3)=6$) and height $O C$ (where O is the origin).
Suppose C has coordinates $(0,-c)$. Then $O C=c$.
Thus, the area of $\triangle A B C$ is $\frac{1}{2}(A B)(O C)=3 c$. But we know that the area of $\triangle A B C$ is 54 , so $3 c=54$ or $c=18$.
Therefore, the parabola has vertex $C(0,-18)$, so has equation $y=a(x-0)^{2}-18$.
(The vertex of the parabola must lie on the y-axis since its roots are equally distant from the y-axis, so C must be the vertex.)
Since the parabola passes through $B(3,0)$, then these coordinates satisfy the equation, so $0=3^{2} a-18$ or $9 a=18$ or $a=2$.
Therefore, the equation of the parabola is $y=2 x^{2}-18$.
5. (a) The perimeter of the sector is made up of two line segments (of total length $5+5=10$) and one arc of a circle.
Since $\frac{72^{\circ}}{360^{\circ}}=\frac{1}{5}$, then the length of the arc is $\frac{1}{5}$ of the total circumference of a circle of radius 5 .
Thus, the length of the arc is $\frac{1}{5}(2 \pi(5))=2 \pi$.
Therefore, the perimeter of the sector is $10+2 \pi$.
(b) $\triangle A O B$ is right-angled at O, so has area $\frac{1}{2}(A O)(O B)=\frac{1}{2} a(1)=\frac{1}{2} a$.

We next need to calculate the area of $\triangle B C D$.

Method 1: Completing the trapezoid
Drop a perpendicular from C to $P(3,0)$ on the x-axis.

Then $D O P C$ is a trapezoid with parallel sides $D O$ of length 1 and $P C$ of length 2 and height $O P$ (which is indeed perpendicular to the parallel sides) of length 3 .
The area of the trapezoid is thus $\frac{1}{2}(D O+P C)(O P)=\frac{1}{2}(1+2)(3)=\frac{9}{2}$.
But the area of $\triangle B C D$ equals the area of trapezoid $D O P C$ minus the areas of $\triangle D O B$ and $\triangle B P C$.
$\triangle D O B$ is right-angled at O, so has area $\frac{1}{2}(D O)(O B)=\frac{1}{2}(1)(1)=\frac{1}{2}$.
$\triangle B P C$ is right-angled at P, so has area $\frac{1}{2}(B P)(P C)=\frac{1}{2}(2)(2)=2$.
Thus, the area of $\triangle D B C$ is $\frac{9}{2}-\frac{1}{2}-2=2$.
(A similar method for calculating the area of $\triangle D B C$ would be to drop a perpendicular to Q on the y-axis, creating a rectangle $Q O P C$.)

Method 2: $\triangle D B C$ is right-angled
The slope of line segment $D B$ is $\frac{1-0}{0-1}=-1$.
The slope of line segment $B C$ is $\frac{2-0}{3-1}=1$.
Since the product of these slopes is -1 (that is, their slopes are negative reciprocals), then $D B$ and $B C$ are perpendicular.
Therefore, the area of $\triangle D B C$ is $\frac{1}{2}(D B)(B C)$.
Now $D B=\sqrt{(1-0)^{2}+(0-1)^{2}}=\sqrt{2}$ and $B C=\sqrt{(3-1)^{2}+(2-0)^{2}}=\sqrt{8}$.
Thus, the area of $\triangle D B C$ is $\frac{1}{2} \sqrt{2} \sqrt{8}=2$.

Since the area of $\triangle A O B$ equals the area of $\triangle D B C$, then $\frac{1}{2} a=2$ or $a=4$.
6. (a) Suppose that O is the centre of the planet, H is the place where His Highness hovers in the helicopter, and P is the furthest point on the surface of the planet that he can see.

Then $H P$ must be a tangent to the surface of the planet (otherwise he could see further), so $O P$ (a radius) is perpendicular to $H P$ (a tangent).
We are told that $O P=24 \mathrm{~km}$.
Since the helicopter hovers at a height of 2 km , then $O H=24+2=26 \mathrm{~km}$.
Therefore, $H P^{2}=O H^{2}-O P^{2}=26^{2}-24^{2}=100$, so $H P=10 \mathrm{~km}$.
Therefore, the distance to the furthest point that he can see is 10 km .
(b) Since we know the measure of $\angle A D B$, then to find the distance $A B$, it is enough to find the distances $A D$ and $B D$ and then apply the cosine law.
In $\triangle D B E$, we have $\angle D B E=180^{\circ}-20^{\circ}-70^{\circ}=90^{\circ}$, so $\triangle D B E$ is right-angled, giving $B D=100 \cos \left(20^{\circ}\right) \approx 93.969$.
In $\triangle D A C$, we have $\angle D A C=180^{\circ}-50^{\circ}-45^{\circ}=85^{\circ}$.
Using the sine law, $\frac{A D}{\sin \left(50^{\circ}\right)}=\frac{C D}{\sin \left(85^{\circ}\right)}$, so $A D=\frac{150 \sin \left(50^{\circ}\right)}{\sin \left(85^{\circ}\right)} \approx 115.346$.

Finally, using the cosine law in $\triangle A B D$, we get

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2}-2(A D)(B D) \cos (\angle A D B) \\
A B^{2} & \approx(115.346)^{2}+(93.969)^{2}-2(115.346)(93.969) \cos \left(35^{\circ}\right) \\
A B^{2} & \approx 4377.379 \\
A B & \approx 66.16
\end{aligned}
$$

Therefore, the distance from A to B is approximately 66 m .
7. (a) Using rules for manipulating logarithms,

$$
\begin{aligned}
(\sqrt{x})^{\log _{10} x} & =100 \\
\log _{10}\left((\sqrt{x})^{\log _{10} x}\right) & =\log _{10} 100 \\
\left(\log _{10} x\right)\left(\log _{10} \sqrt{x}\right) & =2 \\
\left(\log _{10} x\right)\left(\log _{10} x^{\frac{1}{2}}\right) & =2 \\
\left(\log _{10} x\right)\left(\frac{1}{2} \log _{10} x\right) & =2 \\
\left(\log _{10} x\right)^{2} & =4 \\
\log _{10} x & = \pm 2 \\
x & =10^{ \pm 2}
\end{aligned}
$$

Therefore, $x=100$ or $x=\frac{1}{100}$.
(We can check by substitution that each is indeed a solution.)
(b) Solution 1

Without loss of generality, suppose that square $A B C D$ has side length 1 .
Suppose next that $B F=a$ and $\angle C F B=\theta$.
Since $\triangle C B F$ is right-angled at B, then $\angle B C F=90^{\circ}-\theta$.
Since $G C F$ is a straight line, then $\angle G C D=180^{\circ}-90^{\circ}-\left(90^{\circ}-\theta\right)=\theta$.
Therefore, $\triangle G D C$ is similar to $\triangle C B F$, since $\triangle G D C$ is right-angled at D.
Thus, $\frac{G D}{D C}=\frac{B C}{B F}$ or $\frac{G D}{1}=\frac{1}{a}$ or $G D=\frac{1}{a}$.
So $A F=A B+B F=1+a$ and $A G=A D+D G=1+\frac{1}{a}=\frac{a+1}{a}$.
Thus, $\frac{1}{A F}+\frac{1}{A G}=\frac{1}{1+a}+\frac{a}{a+1}=\frac{a+1}{a+1}=1=\frac{1}{A B}$, as required.

Solution 2

We attach a set of coordinate axes to the diagram, with A at the origin, $A G$ lying along the positive y-axis and $A F$ lying along the positive x-axis.
Without loss of generality, suppose that square $A B C D$ has side length 1 , so that C has coordinates $(1,1)$. (We can make this assumption without loss of generality, because if the square had a different side length, then each of the lengths in the problem would be scaled by the same factor.)

Suppose that the line through G and F has slope m.
Since this line passes through $(1,1)$, its equation is $y-1=m(x-1)$ or $y=m x+(1-m)$. The y-intercept of this line is $1-m$, so G has coordinates $(0,1-m)$.
The x-intercept of this line is $\frac{m-1}{m}$, so F has coordinates $\left(\frac{m-1}{m}, 0\right)$. (Note that $m \neq 0$ as the line cannot be horizontal.)
Therefore,

$$
\frac{1}{A F}+\frac{1}{A G}=\frac{m}{m-1}+\frac{1}{1-m}=\frac{m}{m-1}+\frac{-1}{m-1}=\frac{m-1}{m-1}=1=\frac{1}{A B}
$$

as required.

Solution 3

Join A to C.
We know that the sum of the areas of $\triangle G C A$ and $\triangle F C A$ equals the area of $\triangle G A F$.
The area of $\triangle G C A$ (thinking of $A G$ as the base) is $\frac{1}{2}(A G)(D C)$, since $D C$ is perpendicular to $A G$.
Similarly, the area of $\triangle F C A$ is $\frac{1}{2}(A F)(C B)$.
Also, the area of $\triangle G A F$ is $\frac{1}{2}(A G)(A F)$.
Therefore,

$$
\begin{aligned}
\frac{1}{2}(A G)(D C)+\frac{1}{2}(A F)(C B) & =\frac{1}{2}(A G)(A F) \\
\frac{(A G)(D C)}{(A G)(A F)(A B)}+\frac{(A F)(C B)}{(A G)(A F)(A B)} & =\frac{(A G)(A F)}{(A G)(A F)(A B)} \\
\frac{1}{A F}+\frac{1}{A G} & =\frac{1}{A B}
\end{aligned}
$$

as required, since $A B=D C=C B$.
8. (a) We consider placing the three coins individually.

Place one coin randomly on the grid.
When the second coin is placed (in any one of 15 squares), 6 of the 15 squares will leave two coins in the same row or column and 9 of the 15 squares will leave the two coins in different rows and different columns.

Therefore, the probability that the two coins are in different rows and different columns is $\frac{9}{15}=\frac{3}{5}$.
There are 14 possible squares in which the third coin can be placed.

Of these 14 squares, 6 lie in the same row or column as the first coin and an additional 4 lie the same row or column as the second coin. Therefore, the probability that the third coin is placed in a different row and a different column than each of the first two coins is $\frac{4}{14}=\frac{2}{7}$.
Therefore, the probability that all three coins are placed in different rows and different columns is $\frac{3}{5} \times \frac{2}{7}=\frac{6}{35}$.
(b) Suppose that $A B=c, A C=b$ and $B C=a$.

Since $D G$ is parallel to $A C, \angle B D G=\angle B A C$ and $\angle D G B=\angle A C B$, so $\triangle D G B$ is similar to $\triangle A C B$.
(Similarly, $\triangle A E D$ and $\triangle E C F$ are also both similar to $\triangle A B C$.)
Suppose next that $D B=k c$, with $0<k<1$.
Then the ratio of the side lengths of $\triangle D G B$ to those of $\triangle A C B$ will be $k: 1$, so $B G=k a$ and $D G=k b$.
Since the ratio of the side lengths of $\triangle D G B$ to $\triangle A C B$ is $k: 1$, then the ratio of their areas will be $k^{2}: 1$, so the area of $\triangle D G B$ is k^{2} (since the area of $\triangle A C B$ is 1).
Since $A B=c$ and $D B=k c$, then $A D=(1-k) c$, so using similar triangles as before, $D E=(1-k) a$ and $A E=(1-k) b$. Also, the area of $\triangle A D E$ is $(1-k)^{2}$.
Since $A C=b$ and $A E=(1-k) b$, then $E C=k b$, so again using similar triangles, $E F=k c$, $F C=k a$ and the area of $\triangle E C F$ is k^{2}.
Now the area of trapezoid $D E F G$ is the area of the large triangle minus the combined areas of the small triangles, or $1-k^{2}-k^{2}-(1-k)^{2}=2 k-3 k^{2}$.
We know that $k \geq 0$ by its definition. Also, since G is to the left of F, then $B G+F C \leq B C$ or $k a+k a \leq a$ or $2 k a \leq a$ or $k \leq \frac{1}{2}$.
Let $f(k)=2 k-3 k^{2}$.
Since $f(k)=-3 k^{2}+2 k+0$ is a parabola opening downwards, its maximum occurs at its vertex, whose k-coordinate is $k=-\frac{2}{2(-3)}=\frac{1}{3}$ (which lies in the admissible range for k). Note that $f\left(\frac{1}{3}\right)=\frac{2}{3}-3\left(\frac{1}{9}\right)=\frac{1}{3}$.
Therefore, the maximum area of the trapezoid is $\frac{1}{3}$.
9. (a) The vertex of the first parabola has x-coordinate $x=-\frac{1}{2} b$.

Since each parabola passes through P, then

$$
\begin{aligned}
f\left(-\frac{1}{2} b\right) & =g\left(-\frac{1}{2} b\right) \\
\frac{1}{4} b^{2}+b\left(-\frac{1}{2} b\right)+c & =-\frac{1}{4} b^{2}+d\left(-\frac{1}{2} b\right)+e \\
\frac{1}{4} b^{2}-\frac{1}{2} b^{2}+c & =-\frac{1}{4} b^{2}-\frac{1}{2} b d+e \\
\frac{1}{2} b d & =e-c \\
b d & =2(e-c)
\end{aligned}
$$

as required. (The same result can be obtained by using the vertex of the second parabola.)

(b) Solution 1

The vertex, P, of the first parabola has x-coordinate $x=-\frac{1}{2} b$ so has y-coordinate $f\left(-\frac{1}{2} b\right)=\frac{1}{4} b^{2}-\frac{1}{2} b^{2}+c=-\frac{1}{4} b^{2}+c$.
The vertex, Q, of the first parabola has x-coordinate $x=\frac{1}{2} d$ so has y-coordinate
$g\left(\frac{1}{2} d\right)=-\frac{1}{4} d^{2}+\frac{1}{2} d^{2}+c=\frac{1}{4} d^{2}+e$.
Therefore, the slope of the line through P and Q is

$$
\begin{aligned}
\frac{\left(-\frac{1}{4} b^{2}+c\right)-\left(\frac{1}{4} d^{2}+e\right)}{-\frac{1}{2} b-\frac{1}{2} d} & =\frac{-\frac{1}{4}\left(b^{2}+d^{2}\right)-(e-c)}{-\frac{1}{2} b-\frac{1}{2} d} \\
& =\frac{-\frac{1}{4}\left(b^{2}+d^{2}\right)-\frac{1}{2} b d}{-\frac{1}{2} b-\frac{1}{2} d} \\
& =\frac{-\frac{1}{4}\left(b^{2}+2 b d+d^{2}\right)}{-\frac{1}{2}(b+d)} \\
& =\frac{1}{2}(b+d)
\end{aligned}
$$

Using the point-slope form of the line, the line thus has equation

$$
\begin{aligned}
y & =\frac{1}{2}(b+d)\left(x-\left(-\frac{1}{2} b\right)\right)+\left(-\frac{1}{4} b^{2}+c\right) \\
& =\frac{1}{2}(b+d) x+\frac{1}{4} b^{2}+\frac{1}{4} b d-\frac{1}{4} b^{2}+c \\
& =\frac{1}{2}(b+d) x+\frac{1}{4} b d+c \\
& =\frac{1}{2}(b+d) x+\frac{1}{2}(e-c)+c \\
& =\frac{1}{2}(b+d) x+\frac{1}{2}(e+c)
\end{aligned}
$$

so the y-intercept of the line is $\frac{1}{2}(e+c)$.

Solution 2

The equations of the two parabolas are $y=x^{2}+b x+c$ and $y=-x^{2}+d x+e$.
Adding the two equations, we obtain $2 y=(b+d) x+(c+e)$ or $y=\frac{1}{2}(b+d) x+\frac{1}{2}(c+e)$.
This last equation is the equation of a line.
Points P and Q, whose coordinates satisfy the equation of each parabola, must satisfy the equation of the line, and so lie on the line.
But the line through P and Q is unique, so this is the equation of the line through P and Q.
Therefore, the line through P and Q has slope $\frac{1}{2}(b+d)$ and y-intercept $\frac{1}{2}(c+e)$.
10. (a) First, we note that since the circle and lines $X Y$ and $X Z$ are fixed, then the quantity $X Y+X Z$ is fixed.
Since $V T$ and $V Y$ are tangents from the same point V to the circle, then $V T=V Y$.
Since $W T$ and $W Z$ are tangents from the same point W to the circle, then $W T=W Z$.

Therefore, the perimeter of $\triangle V X W$ is

$$
\begin{aligned}
X V+X W+V W & =X V+X W+V T+W T \\
& =X V+X W+V Y+W Z \\
& =X V+V Y+X W+W Z \\
& =X Y+X Z
\end{aligned}
$$

which is constant, by our earlier comment.
Therefore, the perimeter of $\triangle V X W$ always equals $X Y+X Z$, which does not depend on the position of T.

(b) Solution 1

A circle can be drawn that is tangent to the lines $A B$ extended and $A C$ extended, that passes through M, and that has M on the left side of the circle. (The fact that such a circle can be drawn and that this circle is unique can be seen by starting with a small circle tangent to the two lines and expanding the circle, keeping it tangent to the two lines, until it has M on the left side of its circumference.) Suppose that this circle is tangent to $A B$ and $A C$ extended at Y and Z, respectively.
Draw a line tangent to the circle at M that cuts $A B$ (extended) at V and $A C$ (extended) at W.

We prove that $\triangle A V W$ has the minimum perimeter of all triangles that can be drawn with their third side passing through M.
From (a), we know that the perimeter of $\triangle A V W$ equals $A Y+A Z$.
Consider a different triangle $A P Q$ formed by drawing another line through M. Note that this line $P M Q$ cannot be tangent to the circle, so must cut the circle in two places (at M and at another point).

This line, however, will be tangent to a new circle that is tangent to $A B$ and $A C$ at Y^{\prime} and Z^{\prime}. But $P M Q$ cuts the original circle at two points, then this new circle must be formed by shifting the original circle to the right. In other words, Y^{\prime} and Z^{\prime} will be further along $A B$ and $A C$ than Y and Z.
But the perimeter of $\triangle A P Q$ will equal $A Y^{\prime}+A Z^{\prime}$ by (a) and $A Y^{\prime}+A Z^{\prime}>A Y+A Z$, so the perimeter of $\triangle A P Q$ is greater than that of $\triangle A V W$.
Therefore, the perimeter is minimized when the line through M is tangent to the circle.

We now must determine the perimeter of $\triangle A V W$. Note that it is sufficient to determine the length of $A Z$, since the perimeter of $\triangle A V W$ equals $A Y+A Z$ and $A Y=A Z$, so the perimeter of $\triangle A V W$ is twice the length of $A Z$.
First, we calculate $\angle V A W=\angle B A C$ using the cosine law:

$$
\begin{aligned}
B C^{2} & =A B^{2}+A C^{2}-2(A B)(A C) \cos (\angle B A C) \\
14^{2} & =10^{2}+16^{2}-2(10)(16) \cos (\angle B A C) \\
196 & =356-320 \cos (\angle B A C) \\
320 \cos (\angle B A C) & =160 \\
\cos (\angle B A C) & =\frac{1}{2} \\
\angle B A C & =60^{\circ}
\end{aligned}
$$

Next, we add coordinates to the diagram by placing A at the origin $(0,0)$ and $A C$ along the positive x-axis. Thus, C has coordinates $(16,0)$.
Since $\angle B A C=60^{\circ}$ and $A B=10$, then B has coordinates $\left(10 \cos \left(60^{\circ}\right), 10 \sin \left(60^{\circ}\right)\right)$ or $(5,5 \sqrt{3})$.
Since M is the midpoint of $B C$, then M has coordinates $\left(\frac{1}{2}(5+16), \frac{1}{2}(5 \sqrt{3}+0)\right)$ or $\left(\frac{21}{2}, \frac{5}{2} \sqrt{3}\right)$.
Suppose the centre of the circle is O and the circle has radius r.
Since the circle is tangent to the two lines $A Y$ and $A Z$, then the centre of the circle lies on the angle bisector of $\angle B A C$, so lies on the line through the origin that makes an angle of 30° with the positive x-axis. The slope of this line is thus $\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$.
The centre O will have y-coordinate r, since a radius from the centre to $A Z$ is perpendicular to the x-axis. Thus, O has coordinates $(\sqrt{3} r, r)$ and Z has coordinates $(\sqrt{3} r, 0)$.
Thus, the perimeter of the desired triangle is $2 A Z=2 \sqrt{3} r$.
Since the circle has centre $(\sqrt{3} r, r)$ and radius r, then its equation is
$(x-\sqrt{3} r)^{2}+(y-r)^{2}=r^{2}$.
Since M lies on the circle, then when we substitute the coordinates of M, we obtain an
equation for r :

$$
\begin{aligned}
\left(\frac{21}{2}-\sqrt{3} r\right)^{2}+\left(\frac{5}{2} \sqrt{3}-r\right)^{2} & =r^{2} \\
\frac{441}{4}-21 \sqrt{3} r+3 r^{2}+\frac{75}{4}-5 \sqrt{3} r+r^{2} & =r^{2} \\
3 r^{2}-26 \sqrt{3} r+129 & =0 \\
(\sqrt{3} r)^{2}-2(13)(\sqrt{3} r)+169-40 & =0 \\
(\sqrt{3} r-13)^{2} & =40 \\
\sqrt{3} r-13 & = \pm 2 \sqrt{10} \\
r & =\frac{13 \pm 2 \sqrt{10}}{\sqrt{3}} \\
r & =\frac{13 \sqrt{3} \pm 2 \sqrt{30}}{3}
\end{aligned}
$$

(Alternatively, we could have used the quadratic formula instead of completing the square.) Therefore, $r=\frac{13 \sqrt{3}+2 \sqrt{30}}{3}$ since we want the circle with the larger radius that passes through M and is tangent to the two lines. (Note that there is a smaller circle "inside" M and a larger circle "outside" M.)
Therefore, the minimum perimeter is $2 \sqrt{3} r=\frac{26(3)+4 \sqrt{90}}{3}=26+4 \sqrt{10}$.

Solution 2

As in Solution 1, we prove that the triangle with minimum perimeter has perimeter equal to $A Y+A Z$.
Next, we must determine the length of $A Y$.
As in Solution 1, we can show that $\angle Y A Z=60^{\circ}$.
Suppose the centre of the circle is O and the circle has radius r.
Since the circle is tangent to $A Y$ and to $A Z$ at Y and Z, respectively, then $O Y$ and $O Z$ are perpendicular to $A Y$ and $A Z$.
Also, joining O to A bisects $\angle Y A Z$ (since the circle is tangent to $A Y$ and $A Z$), so $\angle Y A O=30^{\circ}$.
Thus, $A Y=\sqrt{3} Y O=\sqrt{3} r$. Also, $A Z=A Y=\sqrt{3} r$.
Next, join O to B and to C.

Since $A B=10$, then $B Y=A Y-A B=\sqrt{3} r-10$.
Since $A C=10$, then $C Z=A Z-A C=\sqrt{3} r-16$.

Since $\triangle O B Y$ is right-angled at Y, then

$$
O B^{2}=B Y^{2}+O Y^{2}=(\sqrt{3} r-10)^{2}+r^{2}
$$

Since $\triangle O C Z$ is right-angled at Z, then

$$
O C^{2}=C Z^{2}+O Z^{2}=(\sqrt{3} r-16)^{2}+r^{2}
$$

In $\triangle O B C$, since $B M=M C$, then $O B^{2}+O C^{2}=2 B M^{2}+2 O M^{2}$. (See the end for a proof of this.)
Therefore,

$$
\begin{aligned}
(\sqrt{3} r-10)^{2}+r^{2}+(\sqrt{3} r-16)^{2}+r^{2} & =2\left(7^{2}\right)+2 r^{2} \\
3 r^{2}-20 \sqrt{3} r+100+r^{2}+3 r^{2}-32 \sqrt{3} r+256+r^{2} & =98+2 r^{2} \\
6 r^{2}-52 \sqrt{3} r+258 & =0 \\
3 r^{2}-26 \sqrt{3} r+129 & =0
\end{aligned}
$$

As in Solution $1, r=\frac{13 \sqrt{3}+2 \sqrt{30}}{3}$, and so the minimum perimeter is

$$
2 \sqrt{3} r=\frac{26(3)+4 \sqrt{90}}{3}=26+4 \sqrt{10}
$$

We could have noted, though, that since we want to find $2 \sqrt{3} r$, then setting $z=\sqrt{3} r$, the equation $3 r^{2}-26 \sqrt{3} r+129=0$ becomes $z^{2}-26 z+129=0$. Completing the square, we get $(z-13)^{2}=40$, so $z=13 \pm 2 \sqrt{10}$, whence the perimeter is $26+4 \sqrt{10}$ in similar way.

We must still justify that, in $\triangle O B C$, we have $O B^{2}+O C^{2}=2 B M^{2}+2 O M^{2}$.

By the cosine law in $\triangle O B M$,

$$
O B^{2}=O M^{2}+B M^{2}-2(O M)(B M) \cos (\angle O M B)
$$

By the cosine law in $\triangle O C M$,

$$
O C^{2}=O M^{2}+C M^{2}-2(O M)(C M) \cos (\angle O M C)
$$

But $B M=C M$ and $\angle O M C=180^{\circ}-\angle O M B$, so $\cos (\angle O M C)=-\cos (\angle O M B)$.
Therefore, our two equations become

$$
\begin{aligned}
& O B^{2}=O M^{2}+B M^{2}-2(O M)(B M) \cos (\angle O M B) \\
& O C^{2}=O M^{2}+B M^{2}+2(O M)(B M) \cos (\angle O M B)
\end{aligned}
$$

Adding, we obtain $O B^{2}+O C^{2}=2 O M^{2}+2 B M^{2}$, as required.
(Notice that this result holds in any triangle with a median drawn in.)

