1. The odd positive integers are arranged in rows in the triangular pattern, as shown.

- (a) What is the 25th odd positive integer? In which row of the pattern will this integer appear?
- (b) What is the 19th integer that appears in the 21st row? Explain how you got your answer.
- (c) Determine the row and the position in that row where the number 1001 occurs. Explain how you got your answer.
- 2. In the diagram, $\triangle ABE$, $\triangle BCE$ and $\triangle CDE$ are right-angled, with $\angle AEB = \angle BEC = \angle CED = 60^{\circ}$, and AE = 24.
 - (a) Determine the length of CE.
 - (b) Determine the perimeter of quadrilateral ABCD.
 - (c) Determine the area of quadrilateral ABCD.

- 3. A line ℓ passes through the points B(7, -1) and C(-1, 7).
 - (a) Determine the equation of this line.
 - (b) Determine the coordinates of the point P on the line ℓ so that P is equidistant from the points A(10, -10) and O(0, 0) (that is, so that PA = PO).
 - (c) Determine the coordinates of all points Q on the line ℓ so that $\angle OQA = 90^{\circ}$.

4. The abundancy index I(n) of a positive integer n is $I(n) = \frac{\sigma(n)}{n}$, where $\sigma(n)$ is the sum of all of the positive divisors of n, including 1 and n itself.

For example, $I(12) = \frac{1+2+3+4+6+12}{12} = \frac{7}{3}$.

- (a) Prove that $I(p) \leq \frac{3}{2}$ for every prime number p.
- (b) For every odd prime number p and for all positive integers k, prove that $I(p^k) < 2$.
- (c) If p and q are different prime numbers, determine $I(p^2)$, I(q) and $I(p^2q)$, and prove that $I(p^2)I(q) = I(p^2q)$.
- (d) Determine, with justification, the smallest odd positive integer n such that I(n) > 2.