2003 Hypatia Contest (Grade 11)
 Wednesday, April 16, 2003

1. (a) Quentin has a number of square tiles, each measuring 1 cm by 1 cm . He tries to put these small square tiles together to form a larger square of side length $n \mathrm{~cm}$, but finds that he has 92 tiles left over. If he had increased the side length of the larger square to $(n+2) \mathrm{cm}$, he would have been 100 tiles short of completing the larger square. How many tiles does Quentin have?
(b) Quentin's friend Rufus arrives with a big pile of identical blocks, each in the shape of a cube. Quentin takes some of the blocks and Rufus takes the rest. Quentin uses his blocks to try to make a large cube with 8 blocks along each edge, but finds that he is 24 blocks short. Rufus, on the other hand, manages to exactly make a large cube using all of his blocks. If they use all of their blocks together, they are able to make a complete cube which has a side length that is 2 blocks longer than Rufus' cube. How many blocks are there in total?
2. Xavier and Yolanda are playing a game starting with some coins arranged in piles. Xavier always goes first, and the two players take turns removing one or more coins from any one pile. The player who takes the last coin wins.
(a) If there are two piles of coins with 3 coins in each pile, show that Yolanda can guarantee that she always wins the game.
(b) If the game starts with piles of 1,2 and 3 coins, explain how Yolanda can guarantee that she always wins the game.
3. In the diagram, the sphere has a diameter of 10 cm . Also, the right circular cone has a height of 10 cm , and its base has a diameter of 10 cm . The sphere and cone sit on a horizontal surface. If a horizontal plane cuts both the sphere and the cone, the cross-sections will both be circles, as shown. Find the height of the horizontal plane that gives circular cross-sections of the sphere and cone of equal area.
4. Square $A B C D$ has vertices $A(1,4), B(5,4), C(5,8)$, and $D(1,8)$. From a point P outside the square, a vertex of the square is said to be visible if it can be connected to P by a straight line that does not pass through the square. Thus, from any point P outside the square, either two or three of the vertices of the square are visible. The visible area of P is the area of the one triangle or the sum of the areas of the two triangles formed by joining P to the two or three visible vertices of the square.
(a) Show that the visible area of $P(2,-6)$ is 20 square units.

(b) Show that the visible area of $Q(11,0)$ is also 20 square units.

(c) The set of points P for which the visible area equals 20 square units is called the 20/20 set, and is a polygon. Determine the perimeter of the 20/20 set.

Extensions (Attempt these only when you have completed as much as possible of the four main problems.)

Extension to Problem 1:

As in Question 1(a), Quentin tries to make a large square out of square tiles and has 92 tiles left over. In an attempt to make a second square, he increases the side length of this first square by an unknown number of tiles and finds that he is 100 tiles short of completing the square. How many different numbers of tiles is it possible for Quentin to have?

Extension to Problem 2:

If the game starts with piles of 2,4 and 5 coins, which player wins if both players always make their best possible move? Explain the winning strategy.

Extension to Problem 3:

A sphere of diameter d and a right circular cone with a base of diameter d stand on a horizontal surface. In this case, the height of the cone is equal to the radius of the sphere. Show that, for any horizontal plane that cuts both the cone and the sphere, the sum of the areas of the circular cross-sections is always the same.

Extension to Problem 4:

From any point P outside a unit cube, 4,6 or 7 vertices are visible in the same sense as in the case of the square. Connecting point P to each of these vertices gives 1,2 or 3 square-based pyramids, which make up the visible volume of P. The 20/20 set is the set of all points P for which the visible volume is 20 , and is a polyhedron. What is the surface area of this 20/20 set?

