Canadian
 Mathematics Competition

An activity of The Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario

2002 Solutions
 Cayley Contest ${ }_{\text {GGrade } 10 \mid}$

for
The CENTRE for EDUCATION in MATHEMATICS and COMPUTING
Awards

1. Expanding and simplifying,

$$
\begin{aligned}
5 x+2(4+x) & =5 x+(8+2 x) \\
& =7 x+8
\end{aligned}
$$

2. Evaluating,

$$
\begin{aligned}
(2+3)^{2}-\left(2^{2}+3^{2}\right) & =5^{2}-(4+9) \\
& =25-13 \\
& =12
\end{aligned}
$$

Answer: (A)
3. If $x=-3$,

$$
\begin{aligned}
x^{2}-4(x-5) & =(-3)^{2}-4(-3-5) \\
& =9-4(-8) \\
& =41
\end{aligned}
$$

Answer: (D)
4. Since $n=\frac{5}{6}(240)$, then $\frac{2}{5} n=\frac{2}{5}\left(\frac{5}{6}\right)(240)=\frac{1}{3}(240)=80$.

Answer: (B)
5. Using exponent laws,

$$
2^{-2} \times 2^{-1} \times 2^{0} \times 2^{1} \times 2^{2}=2^{-2-1+0+1+2}=2^{0}=1
$$

Alternatively,

$$
2^{-2} \times 2^{-1} \times 2^{0} \times 2^{1} \times 2^{2}=\frac{1}{4} \times \frac{1}{2} \times 1 \times 2 \times 4=1 .
$$

ANSWER: (B)
6. In $\triangle A B C$,

$$
\begin{aligned}
\angle A C B+40^{\circ}+60^{\circ} & =180^{\circ} \\
\angle A C B & =80^{\circ}
\end{aligned}
$$

Since $B C$ is parallel to $D E, \angle A E D=\angle A C B=80^{\circ}$.
So

$$
\begin{aligned}
x^{\circ} & =180^{\circ}-\angle A E D=100^{\circ} \\
x & =100
\end{aligned}
$$

7. Since the line has slope $\frac{1}{2}$, then for every 2 units we move to the right, the line rises by 1 unit. Therefore, $(-2+2,4+1)=(0,5)$ lies on the line. Thus the y-intercept is 5 .

Answer: (A)
8. Since Megan's scoring average was 18 points per game after 3 games, she must have scored $3 \times 18=54$ points over her first three games. Similarly, she must have scored $4 \times 17=68$ points over her first 4 games. So in the fourth game, she scored $68-54=14$ points.

ANSWER: (E)
9. Since squares $A B C D$ and $D E F G$ have equal side lengths, then $D C=D E$, ie. $\triangle C D E$ is isosceles. Therefore, $\angle D E C=\angle D C E=70^{\circ}$ and so

$$
\angle C D E=180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}
$$

and

$$
\begin{aligned}
y^{\circ} & =360^{\circ}-\angle A D C-\angle C D E-\angle G D E \\
y^{\circ} & =360^{\circ}-90^{\circ}-40^{\circ}-90^{\circ} \\
y^{\circ} & =140^{\circ} \\
y & =140
\end{aligned}
$$

Answer: (E)
10. Let the original number be x. Then

$$
\begin{aligned}
\frac{x-5}{4} & =\frac{x-4}{5} \\
5(x-5) & =4(x-4) \\
5 x-25 & =4 x-16 \\
x & =9
\end{aligned}
$$

Answer: (C)
11. Point B is the y-intercept of $y=2 x-8$, and so has coordinates $(0,-8)$ from the form of the line. Point A is the x-intercept of $y=2 x-8$, so we set $y=0$ and obtain

$$
\begin{aligned}
0 & =2 x-8 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

and so A has coordinates $(4,0)$. This tells us that Area of $\triangle A O B=\frac{1}{2}(O A)(O B)=\frac{1}{2}(4)(8)=16$.

ANSWER: (B)
12. After the price is increased by 40%, the new price is 140% of $\$ 10.00$, or $\$ 14.00$.

Then after this price is reduced by 30%, the final price is 70% of $\$ 14.00$, which is $0.7(\$ 14.00)=\$ 9.80$.

13. By Pythagoras,

$$
B C^{2}=120^{2}+160^{2}=40000
$$

so $B C=200 \mathrm{~m}$.
Let $F B=x$. Then $C F=200-x$. From the given information,

$$
A C+C F=A B+B F
$$

$$
\begin{aligned}
120+200-x & =160+x \\
160 & =2 x \\
x & =80
\end{aligned}
$$

Thus, the distance from F to B is 80 m .
Answer: (D)

14. Solution 1

We factor out a common factor of a from the first two terms and a common factor of b from the last two terms, and so

$$
\begin{aligned}
a c+a d+b c+b d & =68 \\
a(c+d)+b(c+d) & =68 \\
a(4)+b(4) & =68 \\
4(a+b) & =68 \\
a+b & =17
\end{aligned}
$$

using the fact that $c+d=4$.
Then $a+b+c+d=(a+b)+(c+d)=17+4=21$.

Solution 2

We let $c=d=2$, since $c+d=4$, and then substitute these values to find that

$$
\begin{aligned}
a c+a d+b c+b d & =68 \\
2 a+2 a+2 b+2 b & =68 \\
a+b & =17
\end{aligned}
$$

Thus $(a+b)+(c+d)=17+4=21$.
Answer: (D)
15. From A, we can travel to D, E or B.

If we travel $A \rightarrow D$, we must then go $D \rightarrow E \rightarrow F$, following the arrows.
If we travel $A \rightarrow E$, we must then go $E \rightarrow F$.
If we travel $A \rightarrow B$, we can then travel from B to E, C or F.
From E or C, we must travel directly to F.
Thus, there are 5 different paths from A to F.
Answer: (B)
16. Let the four consecutive positive integers be $n, n+1, n+2, n+3$.

So we need to solve the equation $n(n+1)(n+2)(n+3)=358800$.
Now $n(n+1)(n+2)(n+3)$ is approximately equal to n^{4}, so n^{4} is close to 358800 , and so n is close to $\sqrt[4]{358800} \approx 24.5$.
So we try $24(25)(26)(27)=421200$ which is too big, and so we try $23(24)(25)(26)=358800$, which is the value we want.
So the sum is $23+24+25+26=98$.
Answer: (B)
17. A "double-single" number is of the form $a a b$, where a and b are different digits. There are 9 possibilities for a (since a cannot be 0). For each of these possibilities, there are 9 possibilities for b (since b can be any digit from 0 to 9 , provided that it doesn't equal a). So there are $9 \times 9=81$ possibilities in total.

Answer: (A)

18. Solution 1

Since $\triangle A D F$ and $\triangle A B C$ share $\angle D A F$ and

$$
\frac{A D}{A B}=\frac{A F}{A C}=\frac{1}{2}
$$

then $\triangle A D F$ is similar to $\triangle A B C$. So the ratio of their areas is the square of the ratio of their side lengths, that is
Area of $\triangle A D F=\left(\frac{1}{2}\right)^{2} \times$ Area of $\triangle A B C$.

Also from the similar triangles, $\angle A D F=\angle A B C$, so $D F$ is parallel to $B C$. Therefore, since $A G$ is perpendicular to $B C$, then $A G$ is also perpendicular to $D E$, so $A E$ is an altitude in $\triangle A D F$. Since $\triangle A D F$ is isosceles, $D E=E F$.
Therefore,
Area of $\triangle A D F=\frac{1}{2} \times$ Area of $\triangle A D F$

$$
=\frac{1}{8} \times \text { Area of } \triangle A B C
$$

Solution 2

Join G to D and G to F. This implies that we have four identical isosceles triangles: $\triangle A D F, \triangle G D F, \triangle B D G$, and $\triangle C F G$. Each of these identical triangles has an equal area.
Thus,

$$
\text { Area of } \begin{aligned}
\triangle A E F & =\frac{1}{2}\left(\frac{1}{4} \times \text { Area of } \triangle A B C\right) \\
& =\frac{1}{8} \times \text { Area of } \triangle A B C
\end{aligned}
$$

Answer: (E)
19. Let $x=777777777777777$ and $y=222222222222223$.

So the required quantity is $x^{2}-y^{2}=(x+y)(x-y)$.
Now $x+y=1000000000000000$ and $x-y=555555555555554$.
Thus, $x^{2}-y^{2}=555555555555554000000000000000$, ie. the sum of the digits is $14 \times 5+4=74$.

Answer: (C)
20. Let the final depth of the water be h.

The total initial volume of water is
$\pi(4 \mathrm{~m})^{2}(10 \mathrm{~m})=160 \pi \mathrm{~m}^{3}$.
When the depths of water are equal, $\pi(4 \mathrm{~m})^{2} h+\pi(6 \mathrm{~m})^{2} h=160 \pi \mathrm{~m}^{3}$

$$
\begin{aligned}
\left(52 \pi \mathrm{~m}^{2}\right) h & =160 \pi \mathrm{~m}^{3} \\
h & =\frac{160}{52} \mathrm{~m} \\
h & =\frac{40}{13} \mathrm{~m}
\end{aligned}
$$

Answer: (E)
21. Let r be the radius of the circle.

Since $\angle A O B=90^{\circ}$, then this sector is one quarter of the whole circle, so the circumference of the circle is $4 \times 2 \pi=8 \pi$.
So $2 \pi r=8 \pi$, or $r=4$.
Thus the area of sector $A O B$ is $\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(16)=4 \pi$.

Answer: (A)
22. When we add up a number of consecutive integers, the sum of these integers will be equal to the number of integers being added times the average of the integers being added.
Let N be the number of consecutive integers being added, and let A be the average of the consecutive integers being added. Thus, $N A=75$.
Before we determine the possibilities for N, we make the observation that N must be less than 12 , since the sum of the first 12 positive integers is 78 , and thus the sum of any 12 or more consecutive positive integers is at least 78 .

Case 1: N is odd.

In this case, A (the average) is an integer (there is a "middle number" among the integers being added). Therefore, since $N A=75, N$ must be an odd positive factor of 75 which is bigger than 1 and less than 12 , ie. N is one of 3 or 5 . So there are two possibilities when N is odd, namely $24+25+26=75$ and $13+14+15+16+17=75$.

Case 2: N is even.
In this case A will be half-way between two integers.
Set $N=2 k$ and $A=\frac{2 l+1}{2}$, where k and l are integers.
Then

$$
\begin{aligned}
2 k\left(\frac{2 l+1}{2}\right) & =75 \\
k(2 l+1) & =75
\end{aligned}
$$

Thus k is a factor of 75 , and so $N=2 k$ is 2 times a factor of 75 , ie. N could be 2,6 or 10 . So the possibilities here are $37+38=75,10+11+12+13+14+15=75$, and $3+4+5+6+7+8+9+10+11+12=75$.

So there are 5 ways in total.
ANSWER: (E)
23. By Pythagoras in $\triangle A F B$,

$$
\begin{aligned}
A F^{2}+9^{2} & =41^{2} \\
A F & =40
\end{aligned}
$$

By Pythagoras in $\triangle A F D$,

$$
\begin{aligned}
F D^{2}+40^{2} & =50^{2} \\
F D & =30
\end{aligned}
$$

Since $A D$ is parallel to $B C, \angle F A D=\angle F E B$. Therefore, $\triangle A F D$ is similar to $\triangle E F B$, so $\frac{A F}{F D}=\frac{E F}{F B}$ or $\frac{40}{30}=\frac{E F}{9}$ or $E F=12$.
Since $A E$ is perpendicular to $B D$ and $D C$ is perpendicular to $B D$, then $A E$ is parallel to $D C$, so $A E C D$ is a parallelogram. Thus, $D C=A E=52$.
Now consider quadrilateral $F E C D$.
This quadrilateral is a trapezoid, so

$$
\text { Area of } \begin{aligned}
F E C D & =\frac{1}{2}(E F+C D)(F D) \\
& =\frac{1}{2}(12+52)(30) \\
& =960
\end{aligned}
$$

Answer: (C)
24. We examine a vertical cross-section of the cylinder and the spheres that passes through the vertical axis of the cylinder and the centres of the spheres. (There is such a cross-section since the spheres will be pulled into this position by gravity.)
Let the centres of the spheres be O_{1} and O_{2}, as shown.
Join the centres of the spheres to each other and to the respective points of tangency of the the spheres to the walls of the cylinder.
Then $O_{1} O_{2}=6+9=15$ ($O_{1} O_{2}$ passes through the point of tangency of the two spheres), $O_{1} P=6$ and $O_{2} Q=9$, using the radii of the spheres.
Next, draw $\Delta O_{1} R O_{2}$ so that $R O_{1}$ is perpendicular to $O_{1} P$ and $\angle O_{1} R O_{2}=90^{\circ}$.
Then looking at the width of the cylinder, since $P O_{1}=6$
and $O_{2} Q=9$, we have

$$
\begin{aligned}
P O_{1}+R O_{2}+O_{2} Q & =27 \\
R O_{2} & =12
\end{aligned}
$$

By Pythagoras in $\Delta O_{1} R O_{2}$, we see that $O_{1} R=9$.
Then the depth of the water will be
Radius of lower sphere $+R O_{1}+$ Radius of higher sphere $=9+9+6=24$.
So
Volume of water $=($ Volume of cylinder to height of 24$)-($ Volume of spheres $)$

$$
\begin{aligned}
& =\pi\left(\frac{27}{2}\right)^{2}(24)-\frac{4}{3} \pi(6)^{3}-\frac{4}{3} \pi(9)^{3} \\
& =4374 \pi-288 \pi-972 \pi \\
& =3114 \pi
\end{aligned}
$$

Therefore, the volume of water required is 3114π cubic units.
ANSWER: (D)
25. Subtracting the first equation from the second,

$$
\begin{aligned}
k^{2} x-k x-6 & =0 \\
\left(k^{2}-k\right) x & =6 \\
{[k(k-1)] x } & =6
\end{aligned}
$$

Since we want both k and x to be integers, then $k(k-1)$ is a factor of 6 , ie. is equal to one of $\pm 1, \pm 2, \pm 3, \pm 6$. Now $k(k-1)$ is the product of two consecutive integers, so on this basis we can eliminate six of these eight possibilities to obtain

$$
k(k-1)=2 \quad \text { or } \quad k(k-1)=6
$$

which yields

$$
k^{2}-k-2=0
$$

or

$$
k^{2}-k-6=0
$$

and so $k=2,-1,3,-2$.

We now make a table of values of k, x and y to check when y is also an integer. (We note that from the first equation, $y=\frac{1}{5}(k x+7)$.)

k	x	y
2	3	$\frac{13}{5}$
-1	3	$\frac{4}{5}$
3	1	2
-2	1	1

So there are two values of k for which the lines intersect at a lattice point.

