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2001 EUCLID SOLUTIONS 2

1. (a) What are the values of x such that 2 3 92x –( ) = ?

Solution 1

       
2 3 9

2 3 9 0

2

2

x

x

–

– –

( ) =

( ) =

2 3 3 2 3 3 0x x– – –( ) +( ) = [by difference of squares]

       2 6 2 0x x–( )( ) =
so x = 3  or  x = 0.

Solution 2
2 3 92x –( ) =

2 3 3x – =  or 2 3 3x – –=
Therefore x = 3 or x = 0.

Solution 3
4 12 9 9

4 12 0

4 3 0

2

2

x x

x x

x x

–

–

–

+ =

=
( ) =

Therefore x = 0 or x = 3.

(b) If f x x x( ) = 2 3 5– – , what are the values of k such that f k k( ) = ?

Solution
If f k k( ) = , then k k k2 3 5– – =

 

k k

k k

2 4 5 0

5 1 0

– –

–

=
( ) +( ) =

so      k = 5 or k = –1.

(c) Determine all x y,( ) such that x y2 2 25+ =  and x y– = 1.

Solution 1  (Algebraic)
Since x y– = 1, then x y= +1 (or y x= –1).

So since x y2 2 25+ = , then

  y y+( ) + =1 252 2 or      x x2 21 25+ ( ) =–



2001 EUCLID SOLUTIONS 3

y y y

y y

y y

y y

y

2 2

2

2

2 1 25

2 2 24 0

12 0

4 3 0

4 3

+ + + =

+ =

+ =
+( )( ) =

=

–

–

–

– ,

x x x

x x

x x

x x

2 2

2

2

2 1 25

2 2 24 0

12 0

4 3 0

+ + =

=

=
( ) +( ) =

–

– –

– –

–
 x = 4 3, –

and using x y= +1, and using y x= –1,
we get x = – ,3 4. we get y = 3 4, – .
So the solutions are x y, – , – , ,( ) = ( ) ( )3 4 4 3 .

Solution 2  (Graphical)
Placing each of x y2 2 25+ =  and x y– = 1 on a
grid we have the diagram at the right.

 y

 x
(1, 0)

(4, 3)

(5, 0)

(0, –1)

(– 3, – 4)

(0, 5)
x – y = 1

x2 + y2 = 25

Therefore, the solutions are x y, – , –( ) = ( )3 4 , (4, 3).

2. (a) The vertex of the parabola y x b b h= ( ) + +– 2  has coordinates 2 5,( ).  What is the value of h?

Solution
Since the x-coordinate of the vertex is 2, then b = 2.
Since the y-coordinate of the vertex is 5, then b h+ = 5.  Since b = 2, then h = 3.

(b) In the isosceles triangle ABC, AB AC=  and ∠ = °BAC 40 .
Point P is on AC  such that BP  is the bisector of ∠ ABC .
Similarly, Q is on AB such that CQ bisects ∠ ACB .  What is the
size of ∠ APB , in degrees?

A

PQ

B C
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Solution
Let ∠ = °ABC x2 .  Since ∆ ABC  is isosceles, then ∠ = °ACB x2 .
Since BP  bisects ∠ ABC , ∠ = ∠ = °ABP CBP x .
Similarly, ∠ = ∠ = °ACQ BCQ x .
The angles in ∆ ABC  add to 180°, so

40 2 2 180

35

° + ° + ° = °
=

x x

x .
In ∆ APB , the angles add to 180°, so

40 35 180

105

° + ° + ∠ = °
∠ = °

APB

APB .

A

PQ

B C

x°
x°

x°
x°

40°

(c) In the diagram, AB = 300, PQ = 20, and QR = 100 .  Also,
QR is parallel to AC .  Determine the length of BC , to the

nearest integer.

 A

 B
 R

 P

 Q

 C

Solution 1
Since QR AC , ∠ = ∠ =QRP BAC α  (alternating angles).

From ∆ RPQ , tan α = 1
5

.

In ∆ ACB, since tan α = =1
5

BC

AC
, let BC x=  and

AC x= 5 .  (This argument could also be made by just
using the fact that ∆ RQP  and ∆ ACB are similar.)

By Pythagoras, x x2 2 225 300+ = , x = =90 000
25

58 83˙ . .

Therefore BC = 59 m to the nearest metre.

 A

 B
 R

 P

 Q

 C

20
100

α
α

Solution 2
Since QR AC , ∠ = ∠QRP BAC (alternating angles).

This means ∆ ∆ABC RPQ~  (two equal angles).

By Pythagoras,
PR QP QR2 2 2= +  A

 B
 R

 P

 Q

 C

20
100

  PR = + =100 20 10 4002 2 .
Since ∆ ∆ABC RPQ~ ,
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BC

AB

PQ

RP

BC
AB PQ

RP

=

= ⋅

= ⋅

=

300 20
10 400

58 83˙ .
BC  is 59 m (to the nearest metre).

3. (a) In an increasing sequence of numbers with an odd number of terms, the difference between
any two consecutive terms is a constant d, and the middle term is 302.  When the last 4 terms
are removed from the sequence, the middle term of the resulting sequence is 296.  What is the
value of d?

Solution 1
Let the number of terms in the sequence be 2 1k + .
We label the terms a a a k1 2 2 1, , ..., + .
The middle term here is ak+ =1 302.

Since the difference between any two consecutive terms in this increasing sequence is d,
a a dm m+ =1 –  for m k= 1 2 2, , ..., .
When the last 4 terms are removed, the last term is now a k2 3–  so the middle term is then
ak–1 296= .  (When four terms are removed from the end, the middle term shifts two terms to

the left.)
Now 6 21 1 1 1= = ( ) + ( ) = + =+ +a a a a a a d d dk k k k k k– – –– – .

Therefore d = 3.

Solution 2
If the last four terms are removed from the sequence this results in 302 shifting 2 terms to the
left in the new sequence meaning that 302 296 2– = d , d = 3.

(b) There are two increasing sequences of five consecutive integers, each of which have the
property that the sum of the squares of the first three integers in the sequence equals the sum
of the squares of the last two.  Determine these two sequences.

Solution
Let n be the smallest integer in one of these sequences.
So we want to solve the equation n n n n n2 2 2 2 21 2 3 4+ +( ) + +( ) = +( ) + +( )  (translating the

given problem into an equation).
Thus n n n n n n n n n2 2 2 2 22 1 4 4 6 9 8 16+ + + + + + = + + + + +
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n n

n n

2 8 20 0

10 2 0

– –

– .

=
( ) +( ) =

So n = 10 or n = – 2.
Therefore, the sequences are 10, 11, 12, 13, 14 and – 2, –1, 0, 1, 2.

Verification
– –2 1 0 1 2 52 2 2 2 2( ) + ( ) + = + =  and 10 11 12 13 14 3652 2 2 2 2+ + = + =

4. (a) If f t t( ) = 



sin –π π

2
, what is the smallest positive value of t at which f t( ) attains its

minimum value?

Solution 1

Since t > 0, π π πt – –
2 2

> .  So sin –π πt
2( )  first attains its minimum value when

π π π
t

t

–

.
2

3
2

2

=

=

Solution 2

Rewriting f t( ) as, f t t( ) = ( )[ ]sin –π 1
2

.

Thus f t( ) has a period 
2

2
π

π
=  and appears in the diagram

at the right.
Thus f t( ) attains its minimum at t = 2 .  Note that f t( )
attains a minimum value at t = 0  but since t > 0, the
required answer is t = 2 .

 f (t)

t

1

2
1
2

5
2
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 (b) In the diagram, ∠ = °ABF 41 , ∠ = °CBF 59 , DE  is

parallel to BF , and EF = 25.  If AE EC= , determine the
length of AE , to 2 decimal places.

41°
59°

B

D

C

E

F

A

25

Solution
Let the length of AE EC=  be x.
Then AF x= – 25.

In, ∆ BCF , 
x

BF

+ = °( )25
59tan .

In ∆ ABF , 
x

BF

–
tan

25
41= °( ).

Solving for BF  in these two equations and equating,

BF
x x= +

°
=

°
25

59
25

41tan
–

tan
so tan tan –41 25 59 25°( ) +( ) = °( )( )x x

25 59 41 59 41

25 59 41

59 41

79 67

tan tan tan – tan

tan tan

tan – tan

˙ . .

° + °( ) = ° °( )

=
° + °( )

° °
=

x

x

x

41°
59°

B

D

C

E

F

A

25

x

x – 25

Therefore the length of AE  is 79.67.

5. (a) Determine all integer values of x such that x x2 23 5 0–( ) +( ) < .

Solution
Since x2 0≥  for all x, x2 5 0+ > .  Since x x2 23 5 0–( ) +( ) < , x2 3 0– < , so x2 3<  or

– 3 3< <x .  Thus x = – , ,1 0 1.

(b) At present, the sum of the ages of a husband and wife, P, is six times the sum of the ages of
their children, C.  Two years ago, the sum of the ages of the husband and wife was ten times
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the sum of the ages of the same children.  Six years from now, it will be three times the sum
of the ages of the same children.  Determine the number of children.

Solution
Let n be the number of children.
At the present, P C= 6 , where P and C are as given. (1)
Two years ago, the sum of the ages of the husband and wife was P – 4, since they were each
two years younger.
Similarly, the sum of the ages of the children was C n– 2( )   (n is the number of children).
So two years ago, P C n– –4 10 2= ( ) (2),   from the given condition.
Similarly, six years from now, P C n+ = +( )12 3 6 (3),   from the given condition.
We want to solve for n.
Substituting (1) into each of (2) and (3),

6 4 10 2C C n– –= ( ) or 20 4 4n C– = or 5 1n C– =
6 12 3 6C C n+ = +( ) or – –18 3 12n C+ = or – –6 4n C+ =

Adding these two equations, – –n = 3, so n = 3.
Therefore, there were three children.

6.  (a) Four teams, A, B, C, and D, competed in
a field hockey tournament.  Three
coaches predicted who would win the
Gold, Silver and Bronze medals:

Medal     Gold     Silver     Bronze

Team

• Coach 1 predicted Gold for A, Silver for B, and Bronze for C,
• Coach 2 predicted Gold for B, Silver for C, and Bronze for D,
• Coach 3 predicted Gold for C, Silver for A, and Bronze for D.

Each coach predicted exactly one medal winner correctly.  Complete the table in the answer
booklet to show which team won which medal.

Solution
If A wins gold, then Coach 1 has one right.  For Coach 3 to get one right, D must win bronze,
since A cannot win silver.  Since D wins bronze, Coach 2 gets one right.  So C can’t win
silver, so B does which means Coach 1 has two right, which can’t happen.  So A doesn’t win
gold.
If B wins gold, then Coach 2 has one right.  For Coach 1 to get one right, C wins bronze, as B
can’t win silver.
For Coach 3 to get one right, A wins silver.
So Gold to B, Silver to A and Bronze to C satisfies the conditions.
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(b) In triangle ABC, AB BC= = 25 and AC = 30. The
circle with diameter BC  intersects AB at X and AC  at
Y.  Determine the length of XY .

 B

 X

 A Y C

Solution 1
Join BY .  Since BC  is a diameter, then ∠ = °BYC 90 .
Since AB BC= , ∆ ABC  is isosceles and BY  is an
altitude in ∆ ABC , then AY YC= = 15.
Let ∠ =BAC θ .
Since ∆ ABC  is isosceles, ∠ =BCA θ .
Since BCYX  is cyclic, ∠ =BXY 180 – θ and so
∠ =AXY θ .

θ θ

θ
25

15 15

 B

 X

 A Y C
Thus ∆ AXY  is isosceles and so XY AY= = 15.

Therefore XY = 15.

Solution 2
Join BY .  ∠ = °BYC 90  since it is inscribed in a

semicircle.
∆ BAC is isosceles, so altitude BY  bisects the

base.

Therefore BY = =25 15 202 2– .
Join CX .  ∠ = °CXB 90  since it is also inscribed in
a semicircle.
The area of ∆ ABC  is

25

15 15

 B

 X

 A Y C

7
20

24

1
2

AC( ) BY( ) = 1
2

AB( ) CX( )
1
2

30( ) 20( ) = 1
2

25( ) CX( )

CX = 600
25

= 24.

From ∆ ABY  we conclude that cos ∠ = = =ABY
BY

AB

20
25

4
5

.

In ∆ BXY , applying the Law of Cosines we get XY BX BY BX BY XBY( ) = ( ) + ( ) ( )( ) ∠2 2 2 2– cos .
Now (by Pythagoras ∆ BXC),
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BX BC CX

BX

2 2 2

2 225 24

49

7

=

=
=
=

–

–

.
Therefore XY2 2 2 4

5
7 20 2 7 20= + ( )( )–

 
= +
=

49 400 224

225

–

.
Therefore XY = 15.

7. (a) What is the value of x such that log log –2 2 2 2 2x( )( ) = ?

Solution
log log –

log –

–

–

–

2 2

2
2

2

4

2 2 2

2 2 2

2 2 2

2 2 2

2 2 16

2 18

9

2

x

x

x

x

x

x

x

( )( ) =

( ) =

=

=
=
=
=

( )

(b) Let f x kx( ) = +2 9, where k is a real number.  If f f3 6 1 3( ) ( ) =: : , determine the value of
f f9 3( ) ( )– .

Solution
From the given condition,

f

f

k

k
3
6

2 9

2 9

1
3

3

6
( )
( )

= +
+

=

3 2 9 2 9

0 2 3 2 18

3 6

6 3

k k

k k

+( ) = +

= ( )– – .

We treat this as a quadratic equation in the variable x k= 23 , so
0 3 18

0 6 3

2=
= ( ) +( )

x x

x x

– –

– .

Therefore, 2 63k =  or 2 33k = – .  Since 2 0a >  for any a, then 2 33k ≠ – .

So 2 63k = .  We could solve for k here, but this is unnecessary.
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We calculate f f k k9 3 2 9 2 99 3( ) ( ) = +( ) +( )– –

      

=

= ( )
=
=

2 2

2 2

6 6

210

9 3

3 3 3

3

k k

k k

–

–

–

.

Therefore f f9 3 210( ) ( ) =– .

8. (a) On the grid provided in the answer booklet, sketch y x= 2 4–  and y x= 2 .

Solution
 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

y = x2 – 4

y = 2 x
6

6– 6

(b) Determine, with justification, all values of k for which y x= 2 4–  and y x k= +2  do not

intersect.

Solution
Since each of these two graphs is symmetric about the y-axis (i.e. both are even functions),
then we only need to find k so that there are no points of intersection with x ≥ 0.
So let x ≥ 0 and consider the intersection between y x k= +2  and y x= 2 4– .

Equating, we have, 2 42x k x+ = – .
Rearranging, we want x x k2 2 4 0– – +( ) =  to have no solutions.
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For no solutions, the discriminant is negative, i.e.

20 4 0

4 20

5

+ <
<
<

k

k

k

–

– .

So y x= 2 4–  and y x k= +2  have no intersection points when k < – 5.

(c) State the values of k for which y x= 2 4–  and y x k= +2  intersect in exactly two points.

(Justification is not required.)

Solution Analysing Graphs
For k < – 5, there are no points of
intersection.  When k = – 5, the
graph with equation y x k= +2  is
tangent to the graph with equation
y x= 2 4–  for both x ≥ 0 and x ≤ 0.
So k = – 5 is one possibility for two
intersection points.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

y = x2 – 4

– 5y = 2 x
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For – –5 4< <k  a typical graph

appears on the right.
i.e. for – –5 4< <k , there will be 4

points of intersection.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

When k = – 4, a typical graph

appears on the right.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6
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So when k > – 4, there will only be

two points of intersection, as the
contact point at the cusp of
y x= 2 4–  will be eliminated.  An

example where k = – 2 is shown.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

+ k, k > – 4y = 2 x

y = x2 – 4

So the possibility for exactly two distinct points of intersection are k = – 5, k > – 4.

9. Triangle ABC is right-angled at B and has side lengths which
are integers. A second triangle, PQR, is located inside ∆ ABC
as shown, such that its sides are parallel to the sides of ∆ ABC
and the distance between parallel lines is 2.   Determine the
side lengths of all possible triangles ABC, such that the area of
∆ ABC  is 9 times that of ∆ PQR .

2

 A

 B  C

 Q  R

 P

2

2

Solution 1
Let the sides of ∆ ABC  be AB c= , BC a= , AC b= , a, b, c are all integers.
Since the sides of ∆ PQR  are all parallel to the sides of ∆ ABC , then ∆ ABC  is similar to ∆ PQR .

Now the ratio of areas of ∆ ABC  to ∆ PQR  is 9 32=  to 1, so the ratio of side lengths will be 3 to 1.

So the sides of ∆ PQR  are PQ c=
3
, QR a=

3
, PR b=

3
.
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So we can label the diagram as indicated.
We join the corresponding vertices of the two triangles as

Area of trapezoid

Area of trapezoid

Area of trapezoid

Area of

Area of

BQRC

CRPA

APQB

PQR

ABC

+ ∆

∆ .

Doing so gives,

2
2
3

2
2
3

2
2
3 18 72

a b c
ac ac



 + 



 + 



 + =

Or upon simplifying ac a b c= + +3 3 3  (Note that this
relationship can be derived in a variety of ways.)

 A

 B  C

 Q  R

 P

a
3

c
3

b
3

c
b

a

ac c b a

ac c a b

= + +
=

3 3 3

3 3 3– –

ac c a a c– –3 3 3 2 2= + (since b a c= +2 2 )

a c c a ac a c ac a c2 2 2 2 2 2 2 29 9 6 6 18 9+ + + = +( )– – (squaring both sides)

ac ac c a– –6 6 18 0+( ) =
 ac c a– –6 6 18 0+ = (as ac ≠ 0 )

  

c a a

c
a

a

c
a

– –

–
–

–
.

6 6 18

6 18
6

6
18

6

( ) =

=

= +

Since a is a side of a triangle, a > 0.  We are now looking for positive integer values such that
18

6a –
 is also an integer.

The only possible values for a are 3, 7, 8, 9, 12, 15 and 24.
Tabulating the possibilities and calculating values for b and c gives,

a 3 7 8 9 12 15 24
c 0 24 15 12 9 8 7
b – 25 17 15 15 17 25

Thus the only possibilities for the triangle are 7 24 25, ,( ), 8 15 7, ,( )  and 9 12 15, ,( ).

Solution 2
The two triangles are similar with areas in the ratio 1:9.
Therefore the sides are in the ratio 1:3.
Let a BC= , b CA= , c BA= .
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Then a PQ
3

= , b QR
3

= , c PR
3

= .

Locate points K, L on BC ; M, N  on CA ; and T, S on AB as
shown.

BC BK KL LC

a BK a

= + +

= + +
3

2  Q  R

 P
c

b

a

T

S

A

B

C M N

2

2

2K

L

Therefore BK a= 2
3

2– .

In a similar way, AN b= 2
3

2– .

Now ∆ ∆BKP BTP≅  and ∆ ∆ANR ASR≅ , both by HL .

Therefore BT BK a= = 2
3

2–  and AS AN b= = 2
3

2– .

Now, AB AS ST BT= + +
c b a

c b a

c b a

b c a

c= + +

= +

= +
= + ( )

2
3 3

2
3

2
3

2
3

2
3

2 2

4

6

6

– –

–

–

– .

By Pythagoras, a b c2 2 2+ =

  a2 + [c + (6 – a)]2 = c2

  a2 + c2 + 2c(6 – a) + (6 – a)2 = c2

   a2 +            (6 – a)2 = – 2c(6 – a)
2a2 –        12a + 36 = 2c(a – 6)
  a2 –          6a + 18 = c(a – 6)

c
a a

a

c
a a

a

c a
a

= +

= ( ) +

= +

2 6 18
6

6 18
6

18
6

–
–

–
–

–
.

Since a and c are integers, a – 6 is a divisor of 18.
Also since b c<  and b c a= + ( )6 – , we conclude that 6 0– a <  so a – 6 0> .

Thus a – 6 can be 1, 2, 3, 6, 9, 18.
The values of a are:  7, 8, 9, 12, 15, 24.
Matching values for c:  25, 17, 15, 15, 17, 25
Matching values for b:  24, 15, 12, 9, 8, 7
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The distinct triangles are (7, 24, 25), (8, 15, 17) and (9, 12, 15).

10. Points P and Q are located inside the square ABCD such that
DP is parallel to QB and DP = QB = PQ.  Determine the
minimum possible value of ∠ ADP .

 

 A  B

 D  C

 P

 Q

Solution 1
Placing the information on the coordinate axes, the diagram
is indicated to the right.
We note that P has coordinates a b,( ).
By symmetry (or congruency) we can label lengths a and b
as shown.  Thus Q has coordinates 2 2– , –a b( ).
Since PD PQ= , a b a b2 2 2 22 2 2 2+ = ( ) + ( )– –

or, 3 3 8 8 8 02 2a b a b+ + =– –

a b– –4
3

2 4
3

2 8
9( ) + ( ) =

P is on a circle with centre O 4
3

4
3

,( ) with r = 2
3

2 .

The minimum angle for θ  occurs when DP is tangent to the
circle.

 A(0, 2)  B(2, 2)

 D(0, 0)  C(2, 0)

 P(a, b)

b
a

θ

θ

b

 Q(2 – a, 2 – b)

a

So we have the diagram noted to the right.
Since OD  makes an angle of 45°  with the x -axis then

∠ =PDO 45 – θ and OD = 4
3

2 .

Therefore sin –45
2

2

1
2

2
3
4
3

θ( ) = =  which means 45 30° = °– θ  or

θ = °15 .
Thus the minimum value for θ  is 15°.

 P

θ

2
3

2

O 4
3, 4

3( )
45 – θ

D

Solution 2
Let AB BC CD DA= = = = 1.
Join D to B.  Let ∠ =ADP θ .  Therefore, ∠ =PDB 45 – θ .

Let PD a=  and PB b=  and PQ
a=
2

.
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We now establish a relationship between a and b.
In ∆ PDB , b a a2 2 2 2 2 45= + ( )( ) ( )– cos – θ

or, cos –
–

45
2

2 2

2 2

θ( ) = +a b

a
(1)

 A  B

 D  C

 P

a

θ

b

R
Q

45
– θ

a
2

In ∆ PDR , 
a

a a
2

2
2

2
2

2
45

2
2

2




 = +







( )– cos – θ

or, cos –45
2

3
4

2 1
2θ( ) =

+a

a
(2)

Comparing (1) and (2) gives, 
a b

a

a

a

2 2 3
4

2 1
22

2 2 2
– + =

+
.

Simplifying this, a b2 22 2+ =

or, b
a2

22
2

= –
.

Now cos –

–
–

45

2
2

2

2 2
1

4 2
3

2
2

2

θ( ) =
+







= +





a
a

a
a

a
.

Now considering 3
2

a
a

+ , we know 3
2

0
2

a
a

–






≥

or, 3
2

2 6a
a

+ ≥ .

Thus, cos –45
1

4 2
2 6

3
2

θ( ) ≥ ( ) =

cos –45
3

2
θ( ) ≥ .

cos –45 θ( )  has a minimum value for 45 30° = °– θ  or θ = °15 .

Solution 3
Join BD.  Let BD meet PQ at M.  Let ∠ =ADP θ .
By interior alternate angles, ∠ = ∠P Q  and
∠ = ∠PDM QBM .
Thus ∆ ∆PDM QBM≅  by A.S.A., so PM QM=  and
DM BM= .
So M is the midpoint of BD and the centre of the square.
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Without loss of generality, let PM = 1.  Then PD = 2.
Since θ α+ = °45  (see diagram), θ  will be minimized when
α  is maximized.

 A  B

 D  C

 P

2

θ
M

Q

1

α

Consider ∆ PMD .

Using the sine law, 
sin sinα

1 2
=

∠( )PMD
.

To maximize α , we maximize sin α .

But sin
sin

α =
∠( )PMD

2
, so it is maximized when sin ∠( ) =PMD 1.

In this case, sin α = 1
2

, so α = °30 .

Therefore, θ = ° ° = °45 30 15– , and so the minimum value of θ  is 15°.

Solution 4
We place the diagram on a coordinate grid, with D 0 0,( ),
C 1 0,( ), B 0 1,( ), A 1 1,( ).
Let PD PQ QB a= = = , and ∠ =ADP θ .
Drop a perpendicular from P to AD, meeting AD at X.
Then PX a= sin θ , DX a= cos θ.
Therefore the coordinates of P are a asin , cosθ θ( ) .
Since PD BQ , then ∠ =QBC θ.
So by a similar argument (or by using the fact that PQ are
symmetric through the centre of the square), the coordinates
of Q are 1 1– sin , cosa aθ θ+( ).

 A(0, 1)  B(1, 1)

 D(0, 0)  C(1, 0)

 P

 Q

X

a
a

a

Now PQ a( ) =2 2, so 1 2 1 22 2 2– sin – cosa a aθ θ( ) + ( ) =
2 4 4 42 2 2 2 2+ + +( ) =a a a asin cos – sin cosθ θ θ θ
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2 4 4

2 3

4

2 3

4 2

1

2

1

2
45 45

2 3

4 2
45

2 2

2

2

2

+ = +( )
+ = +

+ = + = °( ) + °( )

+ = + °( )

a a a

a

a

a

a

a

a

– sin cos

sin cos

sin cos cos sin sin cos

sin

θ θ

θ θ

θ θ θ θ

θ

Now         a – 2
3

2
0



 ≥

a a

a a

2 2
3

2
3

2

2 0

3 2 6 2 0

–

–

+ ≥

+ ≥

 

3 2 2 6

3 2

4 2

3

2

2

2

a a

a

a

+ ≥

+ ≥

and equality occurs when a = 2
3

.

So sin θ + °( ) ≥45
3

2
 and thus since 0 90° ≤ ≤ °θ , then θ + ° ≥ °45 60  or θ ≥ °15 .

Therefore the minimum possible value of ∠ ADP  is 15°.


