2005 Canadian Computing Competition
 Day 2, Question 3

Input file: windows.in
Output file: windows.out
Source file: n : \windows \windows .

Move that Mouse AGAIN

You probably remember from Stage 1 that computers have a mouse and sometimes, if you really have to, you have a bunch of windows that you can click on.

In particular, you will have a screen which has $R(1 \leq R \leq 10000)$ rows and $C(1 \leq$ $C \leq 10000)$ columns. You have $n(1 \leq n \leq 50000)$ rectangular windows, defined by the "top-left" coordinates $\left(x_{l}, y_{t}\right)$ and "bottom-right" coordinates $\left(x_{r}, y_{b}\right)$. Note that you can assume that $1 \leq x_{l}<x_{r} \leq C$ and $1 \leq y_{b}<y_{t} \leq R$ (thus, you don't have empty windows). It is worth noting that a window includes all points on its borders: that is, the window defined by $\left(x_{l}, y_{t}\right)$ and $\left(x_{r}, y_{b}\right)$ includes exactly the points (x, y) such that $x_{l} \leq x \leq x_{r}$ and $y_{b} \leq y \leq y_{t}$.

If two windows overlap, the one which is on top of the other window will be listed later in the sequence (not necessarily immediately after, however).

Here comes the mouse part.
You also have a mouse that can click on windows. Initially, the mouse is at position $(1,1)$ (the bottom-left corner of the screen). The mouse will then to be told to move to a particular position (say (x, y), where $1 \leq x \leq C$ and $1 \leq y \leq R$) and click. When the mouse clicks, the window which is visible at that position moves to the top (that is, the entire window becomes visible, possibly hiding some other windows). There will be $m(1 \leq m \leq 10000)$ such mouse clicks.

Your job is to indicate which of the n windows is "in focus" (i.e., most recently clicked on) after each mouse move.

Input

The first line of input consists of an integer C, the number of columns. The second line of input consists of an integer R, the number of rows. The third line of input consists of the number n, the number of windows. On each of the next n lines, there are four integers x_{l} followed by y_{t} followed by x_{r} followed by y_{b}, indicating the "top-left" and "bottom-right" coordinates of this window. (These windows are numbered from 1 to n). On the next line is the integer m. On each of the next m lines will be two integers, x followed by y, indicating the new position of the mouse.

Output

The output is m lines long, each line containing an integer v_{i} such that $0 \leq v_{i} \leq n$. If line i contains the integer $v_{i}\left(v_{i}>0\right)$, that indicates that after the i th mouse move, the window
v_{i} was just clicked on (and has moved to the top). If, instead, $v_{i}=0$, then there was no window at that position.

Sample Input

200
100
3
50508020
706018010
109010040
3
6020
15090
15030

Sample Output

1
0
2

Explanation of Sample Input/Output

The screen has width 200 and height 100. There are three windows on the screen, and initially, we have the following configuration:

After the mouse clicks at $(60,20)$, we have

Since there is no window at position $(150,90), 0$ is outputted.
Once we click at position $(150,30)$, that moves window 2 into focus, to get the following picture.

