# Problem of the Week <br> Problem D and Solution <br> Pi Squares 

## Problem

Pi Day is an annual celebration of the mathematical constant $\pi$. Pi Day is observed on March 14 , since 3,1 , and 4 are the first three significant digits of $\pi$.

Archimedes determined lower bounds for $\pi$ by finding the perimeters of regular polygons inscribed in a circle with diameter of length 1 . (An inscribed polygon of a circle has all of its vertices on the circle.) He also determined upper bounds for $\pi$ by finding the perimeters of regular polygons circumscribed in a circle with diameter of length 1. (A circumscribed polygon of a circle has all sides tangent to the circle. That is, each side of the polygon touches the circle in one spot.)

In this problem, we will determine a lower bound for $\pi$ and an upper bound for $\pi$ by considering an inscribed square and a circumscribed square in a circle of diameter 1.
Consider a circle with centre $C$ and diameter 1 . Since the circle has diameter 1 , it has circumference equal to $\pi$. Now consider the inscribed square $A B D E$ and the circumscribed square $F G H J$.


The perimeter of square $A B D E$ will be less than the circumference of the circle, $\pi$, and will thus give us a lower bound for the value of $\pi$. The perimeter of square $F G H J$ will be greater than the circumference of the circle, $\pi$, and will thus give us an upper bound for the value of $\pi$. Using these squares, determine a lower bound and an upper bound for $\pi$.

Note: For this problem, you may want to use the following known results about circles:

1. For a circle with centre $C$, the diagonals of an inscribed square meet at $90^{\circ}$ at $C$.
2. For a circle with centre $C$, the diagonals of a circumscribed square meet at $90^{\circ}$ at $C$.
3. If a line is tangent to a circle, then the line is perpendicular to the radius drawn to the point of tangency.


## Solution

For the inscribed square $A B D E$, draw line segments $A C$ and $B C$. Both $A C$ and $B C$ are radii of the circle with diameter 1 , so $A C=B C=0.5$.


Since the diagonals of square $A B D E$ meet at $90^{\circ}$ at $C$, it follows that $\triangle A C B$ is a right-angled triangle with $\angle A C B=90^{\circ}$. We can use the Pythagorean Theorem to find the length of $A B$.

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} \\
& =(0.5)^{2}+(0.5)^{2} \\
& =0.25+0.25 \\
& =0.5
\end{aligned}
$$

Therefore, $A B=\sqrt{0.5}$, since $A B>0$.
Since $A B$ is one of the sides of the inscribed square, the perimeter of square $A B D E$ is equal to $4 \times A B=4 \sqrt{0.5}$. This gives us a lower bound for $\pi$. That is, we know $\pi>4 \sqrt{0.5} \approx 2.828$.
For the circumscribed square, let $M$ be the point of tangency on side $F J$ and let $N$ be the point of tangency on $G H$. Draw radii $C M$ and $C N$. Since $M$ is a point of tangency, we know that $\angle F M C=90^{\circ}$, and thus $C M$ is parallel to $F G$. Similarly, $C N$ is parallel to $F G$.


Thus, $M N$ is a straight line segment, and since it passes through $C$, the centre of the circle, $M N$ must also be a diameter of the circle. Thus, $M N=1$. Also, $F M N G$ is a rectangle, so $F G=M N=1$ and the perimeter of square $F G H J$ is equal to $4 \times F G=4(1)=4$. This gives us an upper bound for $\pi$. That is, we know $\pi<4$.
Therefore, a lower bound for $\pi$ is $4 \sqrt{0.5} \approx 2.828$ and an upper bound for $\pi$ is 4 . That is, $4 \sqrt{0.5}<\pi<4$.

Note: Since we know that $\pi \approx 3.14$, these are not the best bounds for $\pi$. Archimedes used regular polygons with more sides to get better bounds. In the Problem of the Week E problem, we investigate using regular hexagons to get better bounds.

