

Problem of the Week

Problem E and Solution

Looking for Integers

Problem

Suppose n and k are integers and $4^{k}<2024$. For how many (n, k) pairs is $2024^{k}\left(\frac{11}{2}\right)^{n}$ equal to an integer?

Solution

First we write 2024 as a product of prime factors: $2024=2^{3} \times 11 \times 23$.
We can then substitute this into our expression.

$$
\begin{aligned}
2024^{k}\left(\frac{11}{2}\right)^{n} & =\left(2^{3} \times 11 \times 23\right)^{k}\left(\frac{11}{2}\right)^{n} \\
& =2^{3 k} \times 11^{k} \times 23^{k} \times \frac{11^{n}}{2^{n}} \\
& =2^{3 k-n} \times 11^{k+n} \times 23^{k}
\end{aligned}
$$

Since $2024^{k}\left(\frac{11}{2}\right)^{n}$ is equal to an integer, it follows that none of the exponents can be negative. Thus, $3 k-n \geq 0, k+n \geq 0$, and $k \geq 0$.
From $3 k-n \geq 0$, we can determine that $n \leq 3 k$. Similarly, from $k+n \geq 0$, we can determine that $n \geq-k$. Thus, n is an integer between $-k$ and $3 k$, inclusive. Since $4^{5}=1024,4^{6}=4096$, and $4^{k}<2024$, it follows that $k \leq 5$. Since $k \geq 0$ and k is an integer, the possible values of k are $0,1,2,3,4$, and 5 .

In the table below, we summarize the number of values of n for each possible value of k.

k	Minimum value of n	Maximum value of n	Number of values of n
0	0	0	1
1	-1	3	5
2	-2	6	9
3	-3	9	13
4	-4	12	17
5	-5	15	21

Thus, the total number of (n, k) pairs is $1+5+9+13+17+21=66$.

