

Problem of the Week Problem E and Solution Looking for Integers

Problem

Suppose n and k are integers and $4^k < 2024$. For how many (n, k) pairs is $2024^k \left(\frac{11}{2}\right)^n$ equal to an integer?

Solution

First we write 2024 as a product of prime factors: $2024 = 2^3 \times 11 \times 23$.

We can then substitute this into our expression.

$$2024^{k} \left(\frac{11}{2}\right)^{n} = \left(2^{3} \times 11 \times 23\right)^{k} \left(\frac{11}{2}\right)^{n}$$
$$= 2^{3k} \times 11^{k} \times 23^{k} \times \frac{11^{n}}{2^{n}}$$
$$= 2^{3k-n} \times 11^{k+n} \times 23^{k}$$

Since $2024^k \left(\frac{11}{2}\right)^n$ is equal to an integer, it follows that none of the exponents can be negative. Thus, $3k - n \ge 0$, $k + n \ge 0$, and $k \ge 0$.

From $3k - n \ge 0$, we can determine that $n \le 3k$. Similarly, from $k + n \ge 0$, we can determine that $n \ge -k$. Thus, n is an integer between -k and 3k, inclusive. Since $4^5 = 1024$, $4^6 = 4096$, and $4^k < 2024$, it follows that $k \le 5$. Since $k \ge 0$ and k is an integer, the possible values of k are 0, 1, 2, 3, 4, and 5.

In the table below, we summarize the number of values of n for each possible value of k.

k	Minimum	Maximum	Number of
	value of n	value of n	values of n
0	0	0	1
1	-1	3	5
2	-2	6	9
3	-3	9	13
4	-4	12	17
5	-5	15	21

Thus, the total number of (n, k) pairs is 1 + 5 + 9 + 13 + 17 + 21 = 66.