Problem of the Week Problem E and Solution
 Bilal's Choices

Problem

Bilal chooses two distinct positive integers. He adds the product of the integers to the sum of the integers, and then adds 1 . He finds that the result is equal to 196.
Determine all possible pairs of integers that Bilal could have chosen.

Solution

Let x and y represent the two positive integers that Bilal chooses. Since the integers are distinct, $x \neq y$. Let $x<y$. That is, let x represent the smaller of the two integers.
The product of the two integers is $x y$ and the sum is $(x+y)$.
Bilal adds the product of the numbers to the sum of the numbers and then adds 1 , and the result is 196. Thus,

$$
x y+x+y+1=196
$$

Factoring the left side, by grouping the first two terms and the last two terms, we get

$$
\begin{aligned}
x(y+1)+1(y+1) & =196 \\
(x+1)(y+1) & =196
\end{aligned}
$$

Since x and y are positive integers, then $x+1$ and $y+1$ are positive integers. Thus, we are looking for a pair of positive integers whose product is 196. There are four ways to factor 196 as a product of two positive integers:

$$
196=1 \times 196=2 \times 98=4 \times 49=7 \times 28=14 \times 14
$$

For the product $196=1 \times 196$, we have $x+1=1$ and $y+1=196$. Thus, $x=0$ and $y=195$. Since the required numbers are positive integers, this solution is inadmissible.
For the product $196=2 \times 98$, we have $x+1=2$ and $y+1=98$. Thus, $x=1$ and $y=97$. This is a valid solution.

For the product $196=4 \times 49$, we have $x+1=4$ and $y+1=49$. Thus, $x=3$ and $y=48$. This is a valid solution.

For the product $196=7 \times 28$, we have $x+1=7$ and $y+1=28$. Thus, $x=6$ and $y=27$. This is a valid solution.

For the product $196=14 \times 14$, we have $x+1=14$ and $y+1=14$. Thus, $x=13$ and $y=13$. Since the required numbers are distinct, this solution is inadmissible.
Therefore, there are three pairs of distinct positive integers that Bilal could have chosen: 1 and 97,3 and 48 , or 6 and 27 . It can be shown that these three pairs do indeed each give the required result.

