

Problem of the Week
Problem E and Solution
Number Crunching

Problem

While waiting for the bus one day, Leo divided numbers on his calculator. He noticed that when 44000 is divided by 18 , the remainder is 8 . He then noticed that the remainder is also 8 when 44000 is divided by 24 , and also when 44000 is divided by 39 . Leo then set out to find other numbers that had the same remainder (not necessarily 8), when divided by 18,24 , and 39. How many five-digit positive integers have the same remainder when divided by 18,24 , and 39 ?

Solution

Since $18=2 \times 3 \times 3,24=2 \times 2 \times 2 \times 3$, and $39=3 \times 13$, the lowest common multiple (LCM) of 18,24 , and 39 is $\operatorname{LCM}(18,24,39)=2 \times 2 \times 2 \times 3 \times 3 \times 13=936$.
Suppose n is a positive integer. Then the following statements are true:
Every integer of the form $936 n$ will have a remainder of 0 when divided by 18,24 , and 39 . Every integer of the form $936 n+1$ will have a remainder of 1 when divided by 18,24 , and 39 . Every integer of the form $936 n+2$ will have a remainder of 2 when divided by 18,24 , and 39 . Every integer of the form $936 n+3$ will have a remainder of 3 when divided by 18,24 , and 39 .

Every integer of the form $936 n+16$ will have a remainder of 16 when divided by 18,24 , and 39 . Every integer of the form $936 n+17$ will have a remainder of 17 when divided by 18,24 , and 39 .

However, every integer of the form $936 n+18$ will not have the same remainder when divided by 18,24 , and 39 . The remainders will be 0,18 , and 18 , respectively. Therefore, we need to find the number of five-digit integers that have the form $936 n+r$ where $0 \leq r \leq 17$.

The smallest five-digit integer that is a multiple of 936 can be found by dividing 10000 by 936 . Since $\frac{10000}{936} \approx 10.68$, the first five-digit multiple is $936 \times 11=10296$. This means the integers from 10296 to $10296+17=10313$ have the same remainder when divided by 18,24 , and 39 .
The largest five-digit integer that is a multiple of 936 can be found by dividing 100000 by 936 .
Since $\frac{100000}{936} \approx 106.84$, the largest five-digit multiple is $936 \times 106=99216$. This means the integers from 99216 to $99216+17=99233$ have the same remainder when divided by 18,24 , and 39. We also note that these are all five-digit integers.
Thus, $936 n$ is a positive five-digit integer for $11 \leq n \leq 106$. The number of positive five-digit integers that are divisible by 936 is $106-11+1=96$. For each of these multiples of 936 , there are 18 integers that have the same remainder when divided by 18,24 , and 39 . This gives a total of $96 \times 18=1728$ integers that have the same remainder when divided by 18,24 , and 39 . However, we need to check integers near 10000 . The largest multiple of 936 that is less than 10000 is $936 \times 10=9360$. This means the integers between 9360 and $9360+18=9378$ have the same remainder when divided by 18, 24, and 39. However, none of these are five-digit integers.

Therefore, the number of five-digit positive integers that have the same remainder when divided by 18,24 , and 39 is 1728 .

