

Problem of the Week Problem E and Solution
 Shape Building

Problem

Sina drew square $A B C D$ with side length 6 cm on a piece of paper and passed the paper to Theo. Theo drew a circle on top of the square so that the circle passes through A and D, and the circle is tangent to side $B C$ at point P. Determine the radius of the circle.

Solution

Let O be the centre of the circle and r be the radius. Construct line segment $P Q$ perpendicular to $C B$ with Q on side $A D$ of the square. Since $C B$ is tangent to the circle with point of tangency $P, P Q$ must pass through the centre of the circle, O. Therefore, $P O=r$.
Since $P Q \perp B C, P Q \| A B$, and $P Q=A B=6$, then $Q O=P Q-P O=6-r$. Since A and D are on the circle, $A O=D O=r$.
Using the Pythagorean Theorem, $A Q^{2}=A O^{2}-Q O^{2}=r^{2}-(6-r)^{2}$ and $D Q^{2}=D O^{2}-Q O^{2}=r^{2}-(6-r)^{2}$. Therefore, $A Q^{2}=D Q^{2}$ and $A Q=D Q$ follows. Since $A Q=D Q$ and $A Q+Q D=A D=6$, we can substitute to obtain $A Q+A Q=2 A Q=6$ or $A Q=3$.

Using the Pythagorean Theorem in $\triangle A Q O$,

$$
\begin{aligned}
A O^{2} & =A Q^{2}+Q O^{2} \\
r^{2} & =3^{2}+(6-r)^{2} \\
r^{2} & =9+36-12 r+r^{2} \\
12 r & =45 \\
r & =\frac{45}{12} \\
r & =3.75
\end{aligned}
$$

Therefore, the radius of the circle is 3.75 cm .

