Problem of the Week Problem E and Solution
 The Shortest Path

Problem

On the Cartesian plane, we draw grid lines at integer points along the x and y axes. We can then draw paths along these grid lines between any two points with integer coordinates. The graph below shows two paths along these grid lines from $O(0,0)$ to $P(6,-4)$. One path has length 10 and the other has length 20.

There are many different paths along the grid lines from O to P, but the smallest possible length of such a path is 10 . Let's call this smallest possible length the path distance from O to P.

Determine the number of points with integer coordinates for which the path distance from O to that point is 10 .

Solution

Solution 1

Let $Q(a, b)$ be a point that has path distance 10 from $O(0,0)$.
Let's first suppose that Q lies on the x or y axis.
The only point along the positive x-axis that has path distance 10 from the origin is $(10,0)$. The only point along the negative x-axis that has path distance 10 from the origin is $(-10,0)$. The only point along the positive y-axis that has path distance 10 from the origin is $(0,10)$. The only point along the negative y-axis that has path distance 10 from the origin is $(0,-10)$. Therefore, there are 4 points along the axes that have a path distance 10 from O.
Next, let's suppose $a>0$ and $b>0$, so Q is in the first quadrant.
Since the path distance from O to Q is 10 , there must be a path from O to Q that moves a total of r units to the right and u units up (in some order) such that $r+u=10$. This means that Q is r units to the right of O and u units up from O. In other words, $a=r$ and $b=u$, so $a+b=r+u=10$.

The points (a, b) in the first quadrant that satisfy $a+b=10$ where a and b are integers are $(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)$. There are 9 such pairs. Therefore, there are 9 points in the first quadrant that have path distance 10 from O.
By symmetry, there are 9 points in each quadrant that have path distance 10 from O. In quadrant 2 , the points are $(-1,9),(-2,8),(-3,7),(-4,6),(-5,5),(-6,4),(-7,3),(-8,2)$, $(-9,1)$. In quadrant 3 , the points are $(-1,-9),(-2,-8),(-3,-7),(-4,-6),(-5,-5)$, $(-6,-4),(-7,-3),(-8,-2),(-9,-1)$. In quadrant 4 , the points are $(1,-9),(2,-8),(3,-7)$, $(4,-6),(5,-5),(6,-4),(7,-3),(8,-2),(9,-1)$.

Therefore, there are a total of $4+(4 \times 9)=40$ points with integer coordinates that have path distance 10 from O.

Solution 2

We are permitted 10 moves to get from the origin to a point by travelling along the grid lines. These moves can be all horizontal (in one direction), all vertical (in one direction), or a combination of horizontal moves (in one direction) with vertical moves (in one direction).
We examine the cases based on the number of horizontal moves.

- $\mathbf{0}$ horizontal moves: Since there are 0 horizontal moves, there are 10 vertical moves. There are two possible endpoints, $(0,10)$ and $(0,-10)$.
- 1 horizontal move: Since there is 1 horizontal move, there are 9 vertical moves. There are four possible endpoints, $(-1,9),(-1,-9),(1,9)$, and $(1,-9)$.
- 2 horizontal moves: Since there are 2 horizontal moves, there are 8 vertical moves. There are four possible endpoints, $(-2,8),(-2,-8),(2,8)$, and $(2,-8)$.
- 3 horizontal moves: Since there are 3 horizontal moves, there are 7 vertical moves. There are four possible endpoints, $(-3,7),(-3,-7),(3,7)$, and $(3,-7)$.
- 4 horizontal moves: Since there are 4 horizontal moves, there are 6 vertical moves. There are four possible endpoints, $(-4,6),(-4,-6),(4,6)$, and $(4,-6)$.
- 5 horizontal moves: Since there are 5 horizontal moves, there are 5 vertical moves. There are four possible endpoints, $(-5,5),(-5,-5),(5,5)$, and $(5,-5)$.
- 6 horizontal moves: Since there are 6 horizontal moves, there are 4 vertical moves. There are four possible endpoints, $(-6,4),(-6,-4),(6,4)$, and $(6,-4)$.
- 7 horizontal moves: Since there are 7 horizontal moves, there are 3 vertical moves. There are four possible endpoints, $(-7,3),(-7,-3),(7,3)$, and $(7,-3)$.
- 8 horizontal moves: Since there are 8 horizontal moves, there are 2 vertical moves. There are four possible endpoints, $(-8,2),(-8,-2),(8,2)$, and $(8,-2)$.
- 9 horizontal moves: Since there are 9 horizontal moves, there is 1 vertical move. There are four possible endpoints, $(-9,1),(-9,-1),(9,1)$, and $(9,-1)$.
- 10 horizontal moves: Since there are 10 horizontal moves, there are 0 vertical moves. There are two possible endpoints, $(-10,0)$ and $(10,0)$.

Therefore, there are a total of $2+(4 \times 9)+2=40$ points with integer coordinates that have path distance 10 from O.

