Problem of the Week Problem E and Solution
 Coin Combinations

Problem

In Canada, a $\$ 2$ coin is called a toonie, a $\$ 1$ coin is called a loonie, and a 25ϕ coin is called a quarter. Four quarters have a value of $\$ 1$.

How many different combinations of toonies, loonies, and/or quarters have a total value of $\$ 100$?

Solution

We will break the solution into cases based on the number of $\$ 2$ coins used. For each case, we will count the number of possibilities for the number of $\$ 1$ and 25ϕ coins.
The maximum number of $\$ 2$ coins we can use is 50 , since $\$ 2 \times 50=\$ 100$. If we use $50 \$ 2$ coins, then we do not need any $\$ 1$ or 25ϕ coins. Therefore, there is only one way to make a total of $\$ 100$ if there are $50 \$ 2$ coins.
Suppose we use $49 \$ 2$ coins. Since $\$ 2 \times 49=\$ 98$, to reach a total of $\$ 100$, we would need two $\$ 1$ and no 25ϕ coins, or one $\$ 1$ and four 25ϕ coins, or no $\$ 1$ and eight 25ϕ coins. Therefore, there are 3 different ways to make a total of $\$ 100$ if we use $49 \$ 2$ coins.
Suppose we use $48 \$ 2$ coins. Since $\$ 2 \times 48=\$ 96$, to reach a total of $\$ 100$, we would need four $\$ 1$ and no 25 c coins, or three $\$ 1$ and four 25 ¢ coins, or two $\$ 1$ and eight 25ϕ coins, or one $\$ 1$ and twelve 25 c coins, or no $\$ 1$ and sixteen 25ϕ coins. Therefore, there are 5 different ways to make a total of $\$ 100$ if we use $48 \$ 2$ coins.
We start to see a pattern. When we reduce the number of $\$ 2$ coins by one, the number of possible combinations using that many $\$ 2$ coins increases by 2 . This is because there are 2 more options for the number of $\$ 1$ coins we can use. Thus, when we use $47 \$ 2$ coins, there are 7 possible ways to make a total of $\$ 100$. When we use $46 \$ 2$ coins, there are 9 possible ways to make a total of $\$ 100$, and so on. When we use $1 \$ 2$ coin, there are 99 different ways to make the difference of $\$ 98$ (because you can use 0 to $98 \$ 1$ coins). When we don't use any $\$ 2$ coins, there are 101 different ways to make a total of $\$ 100$ (because you can use 0 to $100 \$ 1$ coins). Thus, the number of different combinations of coins that have a total value of $\$ 100$ is

$$
1+3+5+7+9+\cdots+99+101
$$

Adding and subtracting the even numbers from 2 to 100 , we get
$1+2+3+4+5+6+7+8+9+\cdots+98+99+100+101-(2+4+6+8+\cdots+98+100)$
Factoring out a factor of 2 from the subtracted even numbers, we get

$$
(1+2+3+\cdots+100+101)-2(1+2+3+4+\cdots+50)
$$

We can then use the formula for the sum of the first n positive integers to find that this expression is equal to

$$
\frac{101(102)}{2}-2\left(\frac{50(51)}{2}\right)=101(51)-50(51)=2601
$$

Therefore, there are 2601 different combinations of toonies, loonies, and/or quarters that have a total value of $\$ 100$.

Extension:

Let's look at the end of the previous computation another way.

$$
\begin{aligned}
1+3+5+7+9+\cdots+99+101 & =\frac{101(102)}{2}-2\left(\frac{50(51)}{2}\right) \\
& =101(51)-50(51) \\
& =51(101-50) \\
& =51(51) \\
& =51^{2}
\end{aligned}
$$

How many odd integers are in the list from 1 to 101? From 1 to 101, there are 101 integers. This list contains the even integers, from 2 to 100, which are 50 in total. Therefore, there are $101-50=51$ odd integers from 1 to 101 .
Is it a coincidence that the sum of the first 51 odd positive integers is equal to 51^{2} ? Is the sum of the first 1000 odd positive integers equal to 1000^{2} ? Is the sum of the first n odd positive integers equal to n^{2} ?

We will develop a formula for the sum of the first n odd positive integers.
We saw in the problem statement that the sum of the first n positive integers is

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Every odd positive integer can be written in the form $2 n-1$, where n is an integer ≥ 1. When $n=1,2 n-1=2(1)-1=1$; when $n=2,2 n-1=2(2)-1=3$, and so on. So the $51^{\text {st }}$ odd positive integer is $2(51)-1=101$, as we determined above. The $n^{\text {th }}$ odd positive integer is $2 n-1$. Let's consider the sum of the first n odd positive integers. That is,

$$
1+3+5+7+\cdots+(2 n-3)+(2 n-1)
$$

Adding and subtracting the even numbers from 2 to $2 n$, we get

$$
\begin{aligned}
& 1+2+3+4+5+\cdots+(2 n-3)+(2 n-2)+(2 n-1)+2 n-(2+4+6+\cdots+(2 n-2)+2 n) \\
& =(1+2+3+4+\cdots+2 n)-(2+4+6+8+\cdots+(2 n-2)+2 n)
\end{aligned}
$$

Factoring out a 2 from the subtracted even numbers, we get

$$
(1+2+3+4+\cdots+2 n)-2(1+2+3+\cdots+n)
$$

We can then use the formula for the sum of the first n positive integers to find that this expression is equal to

$$
\begin{aligned}
\frac{2 n(2 n+1)}{2}-2\left(\frac{n(n+1)}{2}\right) & =n(2 n+1)-n(n+1) \\
& =2 n^{2}+n-n^{2}-n \\
& =n^{2}
\end{aligned}
$$

Therefore, the sum of the first n odd positive integers is equal to n^{2}.
For Further Thought: Can you develop a formula for the sum of the first n even positive integers?

