Problem of the Week Problem E and Solution
 Picking Boxes

Problem

Billy's Box Company sells boxes with the following very particular restrictions on their dimensions.

- The length, width, and height, in cm, must be all integers.
- The ratio of the length to the width to the height must be $4: 3: 5$.
- The sum of the length, width, and height must be between 100 cm and 1000 cm , inclusive.

Stefan bought the box with the smallest possible volume, and Lali bought the box with the largest volume less than $4 \mathrm{~m}^{3}$.
Determine the dimensions of Stefan and Lali's boxes.

Solution

Since the boxes from Billy's Box Company have integer side lengths in the ratio $4: 3: 5$, let $4 n$ represent the length of a box in cm , let $3 n$ represent the width of a box in cm, and let $5 n$ represent the height of a box in cm, where n is an integer. Furthermore, the sum of the length, width and height must be at least 100 cm . It follows that

$$
\begin{aligned}
4 n+3 n+5 n & \geq 100 \\
12 n & \geq 100 \\
n & \geq \frac{100}{12}=8 \frac{1}{3}
\end{aligned}
$$

Also, the sum of the length, width and height must be at most 1000 cm . It follows that

$$
\begin{aligned}
4 n+3 n+5 n & \leq 1000 \\
12 n & \leq 1000 \\
n & \leq \frac{1000}{12}=83 \frac{1}{3}
\end{aligned}
$$

There is one other restriction to consider, since the volume of Lali's box is less than $4 \mathrm{~m}^{3}$. To convert from m^{3} to cm^{3}, note that

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m} \\
& =100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& =1000000 \mathrm{~cm}^{3}
\end{aligned}
$$

Therefore, $4 \mathrm{~m}^{3}=4000000 \mathrm{~cm}^{3}$.
It follows that

$$
\begin{aligned}
(4 n)(3 n)(5 n) & <4000000 \\
60 n^{3} & <4000000 \\
n^{3} & <\frac{200000}{3} \\
n & <\sqrt[3]{\frac{200000}{3}} \approx 40.5
\end{aligned}
$$

We also know that n is an integer. Since $n \geq 8 \frac{1}{3}$, then the smallest possible integer value of n is 9 . Using the dimensions $4 n, 3 n$, and $5 n$ with $n=9$, we can determine that the dimensions of Stefan's box are 36 cm by 27 cm by 45 cm .
For Lali's box, since $n \leq 83 \frac{1}{3}$ and $n<40.5$, then the largest possible value of n is 40. Using the dimensions $4 n, 3 n$, and $5 n$ with $n=40$, we can determine that the dimensions of Lali's box are 160 cm by 120 cm by 200 cm . This box has a volume of $3.84 \mathrm{~m}^{3}$.

