
Problem of the Week
Problem E and Solution
Overlapping Shapes 3

Problem
Austin draws 4ABC with AB = 3 cm, BC = 4 cm, and ∠ABC = 90◦. Lachlan then draws
4DBF on top of 4ABC so that D lies on AB, F lies on the extension of BC, DB = 2 cm,
and sides AC and DF meet at E. If AE = 3 cm and EC = 2 cm, determine the length of CF .

Solution
Since AB = 3 and DB = 2, it follows that AD = 1 cm.
Draw a perpendicular from E to BF .
Let P be the point where the perpendicular intersects BF .
Let CF = a, PC = b, and EP = h.
We will now proceed with three solutions. The first two
solutions depend on this setup. The first uses similar tri-
angles, the second uses trigonometry, and the third uses
coordinate geometry.

Solution 1
Since EP is perpendicular to BF , we know ∠EPF = 90◦. Also, ∠ECP = ∠ACB (same
angle). Therefore, 4ABC ∼ 4EPC (by angle-angle triangle similarity).

From the similarity,
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Now let’s calculate PF . We know ∠EPF = ∠DBF = 90◦ and ∠EFP = ∠DFB (same angle).

Therefore, 4DBF ∼ 4EPF (by angle-angle triangle similarity). This tells us
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Since BF = BC + CF = 4 + a and PF = PC + CF = 8
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Therefore, CF = 2 cm.



Solution 2
In 4EPC, sin(∠ECP ) = h

2
. In 4ABC, sin(∠ACB) = 3

5
.

Since ∠ECP = ∠ACB (same angle),
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Since 4EPC is a right-angled triangle,
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In 4DBF, tan(∠DFB) =
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Since ∠EFP = ∠DFB (same angle),

tan(∠EFP ) = tan(∠DFB)
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Therefore, CF = 2 cm.



Solution 3
We will use coordinate geometry in this solution, and place B at the origin. Using the given
information, D is at (0, 2), A is at (0, 3), C is at (4, 0), and F is on the positive x-axis at (f, 0)
with f > 4. Consider the circle through E with centre C(4, 0). Since CE = 2, the radius of
this circle is 2. Thus, the equation of this circle is (x− 4)2 + y2 = 4.

The line passing through A(0, 3) and C(4, 0) has y-intercept 3 and slope −3
4
, and so has

equation y = −3
4
x+ 3. Since E lies on the line with equation y = −3

4
x+ 3 and the circle with

equation (x− 4)2 + y2 = 4, to find the coordinates of E, we substitute y = −3
4
x+ 3 for y in

(x− 4)2 + y2 = 4. Note that E is in the first quadrant so x > 0 and y > 0.

Doing so, we get

(x− 4)2 +

(
−3

4
x+ 3

)2

= 4

Expanding the left side, we get
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Multiplying by 16, we get
16x2 − 128x+ 256 + 9x2 − 72x+ 144 = 64

Simplifying, we get
25x2 − 200x+ 336 = 0

Factoring, we then get
(5x− 12)(5x− 28) = 0
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5
in y = −3

4
x+ 3, we obtain y = −6

5
. But E is in the first quadrant so y > 0,

and this second possibility is inadmissible. It follows that E has coordinates
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We can now find the equation of the line containing D(0, 2), E
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has y-intercept 2, slope equal to
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The point F (f, 0) lies on this line, so 0 = −1
3
(f) + 2, which leads to f = 6. Thus, the point F

has coordinates (6, 0). Since C is at (4, 0) and F is at (6, 0), CF = 2. It turns out that F also
lies on the circle through E.

Therefore, CF = 2 cm.


