

Problem of the Week Problem E and Solution
 Overlapping Shapes 3

Problem

Austin draws $\triangle A B C$ with $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$, and $\angle A B C=90^{\circ}$. Lachlan then draws $\triangle D B F$ on top of $\triangle A B C$ so that D lies on $A B, F$ lies on the extension of $B C, D B=2 \mathrm{~cm}$, and sides $A C$ and $D F$ meet at E. If $A E=3 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$, determine the length of $C F$.

Solution

Since $A B=3$ and $D B=2$, it follows that $A D=1 \mathrm{~cm}$. Draw a perpendicular from E to $B F$.
Let P be the point where the perpendicular intersects $B F$. Let $C F=a, P C=b$, and $E P=h$.
We will now proceed with three solutions. The first two solutions depend on this setup. The first uses similar triangles, the second uses trigonometry, and the third uses
 coordinate geometry.

Solution 1

Since $E P$ is perpendicular to $B F$, we know $\angle E P F=90^{\circ}$. Also, $\angle E C P=\angle A C B$ (same angle). Therefore, $\triangle A B C \sim \triangle E P C$ (by angle-angle triangle similarity).
From the similarity, $\frac{A C}{B C}=\frac{E C}{P C}$, so $\frac{5}{4}=\frac{2}{b}$ or $b=\frac{8}{5}$. Also, $\frac{A C}{A B}=\frac{E C}{E P}$, so $\frac{5}{3}=\frac{2}{h}$ or $h=\frac{6}{5}$.
Now let's calculate $P F$. We know $\angle E P F=\angle D B F=90^{\circ}$ and $\angle E F P=\angle D F B$ (same angle).
Therefore, $\triangle D B F \sim \triangle E P F$ (by angle-angle triangle similarity). This tells us $\frac{D B}{B F}=\frac{E P}{P F}$.
Since $B F=B C+C F=4+a$ and $P F=P C+C F=\frac{8}{5}+a$, we have

$$
\begin{aligned}
\frac{D B}{B F} & =\frac{E P}{P F} \\
\frac{2}{4+a} & =\frac{\frac{6}{5}}{\frac{8}{5}+a} \\
\frac{16}{5}+2 a & =\frac{24}{5}+\frac{6}{5} a \\
2 a-\frac{6}{5} a & =\frac{24}{5}-\frac{16}{5} \\
\frac{4}{5} a & =\frac{8}{5} \\
a & =2
\end{aligned}
$$

Therefore, $C F=2 \mathrm{~cm}$.

Solution 2

In $\triangle E P C, \sin (\angle E C P)=\frac{h}{2}$. In $\triangle A B C, \sin (\angle A C B)=\frac{3}{5}$. Since $\angle E C P=\angle A C B$ (same angle),

$$
\begin{aligned}
\sin (\angle E C P) & =\sin (\angle A C B) \\
\frac{h}{2} & =\frac{3}{5} \\
h & =\frac{6}{5}
\end{aligned}
$$

Since $\triangle E P C$ is a right-angled triangle,

$$
\begin{aligned}
E P^{2}+P C^{2} & =E C^{2} \\
h^{2}+b^{2} & =2^{2} \\
\left(\frac{6}{5}\right)^{2}+b^{2} & =4 \\
b^{2} & =4-\frac{36}{25} \\
b^{2} & =\frac{64}{25} \\
b & =\frac{8}{5}, \quad \text { since } \quad b>0
\end{aligned}
$$

In $\triangle E P F, \tan (\angle E F P)=\frac{E P}{P F}=\frac{h}{a+b}=\frac{\frac{6}{5}}{a+\frac{8}{5}}$.
In $\triangle D B F, \tan (\angle D F B)=\frac{D B}{B F}=\frac{2}{4+a}$.
Since $\angle E F P=\angle D F B$ (same angle),

$$
\begin{aligned}
\tan (\angle E F P) & =\tan (\angle D F B) \\
\frac{\frac{6}{5}}{a+\frac{8}{5}} & =\frac{2}{4+a} \\
\frac{24}{5}+\frac{6}{5} a & =2 a+\frac{16}{5} \\
2 a-\frac{6}{5} a & =\frac{24}{5}-\frac{16}{5} \\
\frac{4}{5} a & =\frac{8}{5} \\
a & =2
\end{aligned}
$$

Therefore, $C F=2 \mathrm{~cm}$.

Solution 3

We will use coordinate geometry in this solution, and place B at the origin. Using the given information, D is at $(0,2), A$ is at $(0,3), C$ is at $(4,0)$, and F is on the positive x-axis at $(f, 0)$ with $f>4$. Consider the circle through E with centre $C(4,0)$. Since $C E=2$, the radius of this circle is 2 . Thus, the equation of this circle is $(x-4)^{2}+y^{2}=4$.

The line passing through $A(0,3)$ and $C(4,0)$ has y-intercept 3 and slope $-\frac{3}{4}$, and so has equation $y=-\frac{3}{4} x+3$. Since E lies on the line with equation $y=-\frac{3}{4} x+3$ and the circle with equation $(x-4)^{2}+y^{2}=4$, to find the coordinates of E, we substitute $y=-\frac{3}{4} x+3$ for y in $(x-4)^{2}+y^{2}=4$. Note that E is in the first quadrant so $x>0$ and $y>0$.

Doing so, we get

$$
(x-4)^{2}+\left(-\frac{3}{4} x+3\right)^{2}=4
$$

Expanding the left side, we get

$$
x^{2}-8 x+16+\frac{9}{16} x^{2}-\frac{9}{2} x+9=4
$$

Multiplying by 16, we get

$$
16 x^{2}-128 x+256+9 x^{2}-72 x+144=64
$$

Simplifying, we get

$$
25 x^{2}-200 x+336=0
$$

Factoring, we then get

$$
(5 x-12)(5 x-28)=0
$$

It follows that $x=\frac{12}{5}$ or $x=\frac{28}{5}$. Substituting $x=\frac{12}{5}$ in $y=-\frac{3}{4} x+3$, we obtain $y=\frac{6}{5}$.
Substituting $x=\frac{28}{5}$ in $y=-\frac{3}{4} x+3$, we obtain $y=-\frac{6}{5}$. But E is in the first quadrant so $y>0$, and this second possibility is inadmissible. It follows that E has coordinates $\left(\frac{12}{5}, \frac{6}{5}\right)$.
We can now find the equation of the line containing $D(0,2), E\left(\frac{12}{5}, \frac{6}{5}\right)$, and $F(f, 0)$. This line has y-intercept 2, slope equal to $\frac{\frac{6}{5}-2}{\frac{12}{5}-0}=\frac{-\frac{4}{5}}{\frac{12}{5}}=-\frac{1}{3}$, and thus has equation $y=-\frac{1}{3} x+2$.
The point $F(f, 0)$ lies on this line, so $0=-\frac{1}{3}(f)+2$, which leads to $f=6$. Thus, the point F has coordinates $(6,0)$. Since C is at $(4,0)$ and F is at $(6,0), C F=2$. It turns out that F also lies on the circle through E.
Therefore, $C F=2 \mathrm{~cm}$.

