

Problem E and Solution Overlapping Shapes 3

Problem

4

D 3

2

В

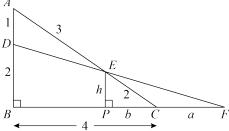
Austin draws $\triangle ABC$ with AB = 3 cm, BC = 4 cm, and $\angle ABC = 90^{\circ}$. Lachlan then draws $\triangle DBF$ on top of $\triangle ABC$ so that D lies on AB, F lies on the extension of BC, DB = 2 cm, and sides AC and DF meet at E. If AE = 3 cm and EC = 2 cm, determine the length of CF.

Solution

Since AB = 3 and DB = 2, it follows that AD = 1 cm. Draw a perpendicular from E to BF. Let P be the point where the perpendicular intersects BF.

Let CF = a, PC = b, and EP = h.

We will now proceed with three solutions. The first two solutions depend on this setup. The first uses similar triangles, the second uses trigonometry, and the third uses coordinate geometry.



Solution 1

Since EP is perpendicular to BF, we know $\angle EPF = 90^{\circ}$. Also, $\angle ECP = \angle ACB$ (same angle). Therefore, $\triangle ABC \sim \triangle EPC$ (by angle-angle triangle similarity).

From the similarity, $\frac{AC}{BC} = \frac{EC}{PC}$, so $\frac{5}{4} = \frac{2}{h}$ or $b = \frac{8}{5}$. Also, $\frac{AC}{AB} = \frac{EC}{EP}$, so $\frac{5}{3} = \frac{2}{h}$ or $h = \frac{6}{5}$. Now let's calculate PF. We know $\angle EPF = \angle DBF = 90^{\circ}$ and $\angle EFP = \angle DFB$ (same angle). Therefore, $\triangle DBF \sim \triangle EPF$ (by angle-angle triangle similarity). This tells us $\frac{DB}{BF} = \frac{EP}{PF}$.

Since BF = BC + CF = 4 + a and $PF = PC + CF = \frac{8}{5} + a$, we have

$$\frac{DB}{BF} = \frac{EP}{PF}$$
$$\frac{2}{4+a} = \frac{\frac{6}{5}}{\frac{8}{5}+a}$$
$$\frac{16}{5} + 2a = \frac{24}{5} + \frac{6}{5}a$$
$$2a - \frac{6}{5}a = \frac{24}{5} - \frac{16}{5}$$
$$\frac{4}{5}a = \frac{8}{5}$$
$$a = 2$$

Therefore, CF = 2 cm.

Solution 2

In $\triangle EPC$, $\sin(\angle ECP) = \frac{h}{2}$. In $\triangle ABC$, $\sin(\angle ACB) = \frac{3}{5}$. Since $\angle ECP = \angle ACB$ (same angle), $\sin(\angle ECP) = \sin(\angle ACB)$ $\frac{h}{2} = \frac{3}{5}$ $h = \frac{6}{5}$

Since $\triangle EPC$ is a right-angled triangle,

$$EP^{2} + PC^{2} = EC^{2}$$

$$h^{2} + b^{2} = 2^{2}$$

$$\left(\frac{6}{5}\right)^{2} + b^{2} = 4$$

$$b^{2} = 4 - \frac{36}{25}$$

$$b^{2} = \frac{64}{25}$$

$$b = \frac{8}{5}, \text{ since } b > 0$$

In $\triangle EPF$, $\tan(\angle EFP) = \frac{EP}{PF} = \frac{h}{a+b} = \frac{\frac{6}{5}}{a+\frac{8}{5}}$. In $\triangle DBF$, $\tan(\angle DFB) = \frac{DB}{BF} = \frac{2}{4+a}$. Since $\angle EFP = \angle DFB$ (same angle),

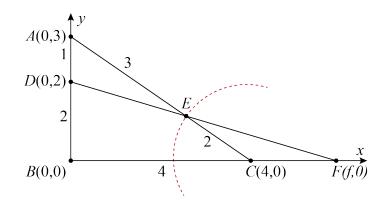
$$\tan(\angle EFP) = \tan(\angle DFB)$$
$$\frac{\frac{6}{5}}{a + \frac{8}{5}} = \frac{2}{4 + a}$$
$$\frac{24}{5} + \frac{6}{5}a = 2a + \frac{16}{5}$$
$$2a - \frac{6}{5}a = \frac{24}{5} - \frac{16}{5}$$
$$\frac{4}{5}a = \frac{8}{5}$$
$$a = 2$$

Therefore, CF = 2 cm.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution 3

We will use coordinate geometry in this solution, and place B at the origin. Using the given information, D is at (0,2), A is at (0,3), C is at (4,0), and F is on the positive x-axis at (f,0) with f > 4. Consider the circle through E with centre C(4,0). Since CE = 2, the radius of this circle is 2. Thus, the equation of this circle is $(x - 4)^2 + y^2 = 4$.



The line passing through A(0,3) and C(4,0) has y-intercept 3 and slope $-\frac{3}{4}$, and so has equation $y = -\frac{3}{4}x + 3$. Since E lies on the line with equation $y = -\frac{3}{4}x + 3$ and the circle with equation $(x-4)^2 + y^2 = 4$, to find the coordinates of E, we substitute $y = -\frac{3}{4}x + 3$ for y in $(x-4)^2 + y^2 = 4$. Note that E is in the first quadrant so x > 0 and y > 0.

Doing so, we get

$$(x-4)^2 + \left(-\frac{3}{4}x+3\right)^2 = 4$$

Expanding the left side, we get

$$x^2 - 8x + 16 + \frac{9}{16}x^2 - \frac{9}{2}x + 9 = 4$$

Multiplying by 16, we get

 $16x^2 - 128x + 256 + 9x^2 - 72x + 144 = 64$

Simplifying, we get

$$25x^2 - 200x + 336 = 0$$

Factoring, we then get

$$(5x - 12)(5x - 28) = 0$$

It follows that $x = \frac{12}{5}$ or $x = \frac{28}{5}$. Substituting $x = \frac{12}{5}$ in $y = -\frac{3}{4}x + 3$, we obtain $y = \frac{6}{5}$. Substituting $x = \frac{28}{5}$ in $y = -\frac{3}{4}x + 3$, we obtain $y = -\frac{6}{5}$. But *E* is in the first quadrant so y > 0, and this second possibility is inadmissible. It follows that *E* has coordinates $(\frac{12}{5}, \frac{6}{5})$.

We can now find the equation of the line containing D(0,2), $E\left(\frac{12}{5},\frac{6}{5}\right)$, and F(f,0). This line has y-intercept 2, slope equal to $\frac{\frac{6}{5}-2}{\frac{12}{5}-0} = \frac{-\frac{4}{5}}{\frac{12}{5}} = -\frac{1}{3}$, and thus has equation $y = -\frac{1}{3}x + 2$.

The point F(f, 0) lies on this line, so $0 = -\frac{1}{3}(f) + 2$, which leads to f = 6. Thus, the point F has coordinates (6, 0). Since C is at (4, 0) and F is at (6, 0), CF = 2. It turns out that F also lies on the circle through E.

Therefore, CF = 2 cm.