

Problem of the Week Problem E and Solution Find Another Angle

Problem

The points A, B, D, and E lie on the circumference of a circle with centre C, as shown.

If $\angle BCD = 72^{\circ}$ and CD = DE, then determine the measure of $\angle BAE$.

Solution

We draw radii from C to points A and E on the circumference, and join B to D. Since CA, CB, CD, and CE are all radii, CA = CB = CD = CE.

We're given that CD = DE. Since CD = CE, we have CD = CE = DE, and thus $\triangle CDE$ is equilateral. It follows that $\angle ECD = \angle CED = \angle CDE = 60^{\circ}$.

Let $\angle CDB = x^{\circ}$, $\angle CBA = y^{\circ}$, and $\angle CAE = z^{\circ}$. Since CB = CD, $\triangle CBD$ is isosceles. Therefore, $\angle CBD = \angle CDB = x^{\circ}$. Since CA = CB, $\triangle CAB$ is isosceles. Therefore, $\angle CAB = \angle CBA = y^{\circ}$.

Since CE = CA, $\triangle CEA$ is isosceles. Therefore, $\angle CEA = \angle CAE = z^{\circ}$.

Since the angles in a triangle sum to 180°, from $\triangle CBD$ we have $x^{\circ} + x^{\circ} + 72^{\circ} = 180^{\circ}$. Thus, $2x^{\circ} = 108^{\circ}$ and x = 54.

Since ABDE is a quadrilateral and the sum of the interior angles of a quadrilateral is equal to 360° , we have

$$\angle BAE + \angle ABD + \angle BDE + \angle DEA = 360^{\circ}$$
$$(y^{\circ} + z^{\circ}) + (y^{\circ} + x^{\circ}) + (x^{\circ} + 60^{\circ}) + (60^{\circ} + z^{\circ}) = 360^{\circ}$$
$$2x + 2y + 2z = 240$$
$$x + y + z = 120$$
$$54 + y + z = 120$$
$$y + z = 66$$

Since $\angle BAE = (y+z)^{\circ}$, then $\angle BAE = 66^{\circ}$.