

Problem of the Week Problem E and Solution
 Find Another Angle

Problem

The points A, B, D, and E lie on the circumference of a circle with centre C, as shown.
If $\angle B C D=72^{\circ}$ and $C D=D E$, then determine the measure of $\angle B A E$.

Solution

We draw radii from C to points A and E on the circumference, and join B to D. Since $C A$, $C B, C D$, and $C E$ are all radii, $C A=C B=C D=C E$.
We're given that $C D=D E$. Since $C D=C E$, we have $C D=C E=D E$, and thus $\triangle C D E$ is equilateral. It follows that $\angle E C D=\angle C E D=\angle C D E=60^{\circ}$.

Let $\angle C D B=x^{\circ}, \angle C B A=y^{\circ}$, and $\angle C A E=z^{\circ}$.
Since $C B=C D, \triangle C B D$ is isosceles. Therefore, $\angle C B D=\angle C D B=x^{\circ}$.
Since $C A=C B, \triangle C A B$ is isosceles. Therefore, $\angle C A B=\angle C B A=y^{\circ}$.
Since $C E=C A, \triangle C E A$ is isosceles. Therefore, $\angle C E A=\angle C A E=z^{\circ}$.

Since the angles in a triangle sum to 180°, from $\triangle C B D$ we have $x^{\circ}+x^{\circ}+72^{\circ}=180^{\circ}$. Thus, $2 x^{\circ}=108^{\circ}$ and $x=54$.

Since $A B D E$ is a quadrilateral and the sum of the interior angles of a quadrilateral is equal to 360°, we have

$$
\begin{aligned}
\angle B A E+\angle A B D+\angle B D E+\angle D E A & =360^{\circ} \\
\left(y^{\circ}+z^{\circ}\right)+\left(y^{\circ}+x^{\circ}\right)+\left(x^{\circ}+60^{\circ}\right)+\left(60^{\circ}+z^{\circ}\right) & =360^{\circ} \\
2 x+2 y+2 z & =240 \\
x+y+z & =120 \\
54+y+z & =120 \\
y+z & =66
\end{aligned}
$$

Since $\angle B A E=(y+z)^{\circ}$, then $\angle B A E=66^{\circ}$.

