

Problem of the Week Problem E and Solution Diagonal Distance

Problem

Square ABCD has K on BC, L on DC, M on AD, and N on AB such that KLMN forms a rectangle, $\triangle AMN$ and $\triangle LKC$ are congruent isosceles triangles, and also $\triangle MDL$ and $\triangle BNK$ are congruent isosceles triangles. If the total area of the four triangles is 50 cm², what is the length of MK?

Solution

Let x represent the lengths of the equal sides of $\triangle AMN$ and $\triangle LKC$, and let y represent the lengths of the equal sides of $\triangle MDL$ and $\triangle BNK$.

Thus, area $\triangle AMN = \text{area } \triangle LKC = \frac{1}{2}x^2$, and area $\triangle MDL = \text{area } \triangle BNK = \frac{1}{2}y^2$. Therefore, the total area of the four triangles is equal to $\frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{2}y^2 = x^2 + y^2$. Since we're given that this area is 50 cm², we have $x^2 + y^2 = 50$.

Three different solutions to find the length of MK are provided.

Solution 1

In $\triangle AMN$, $MN^2 = AM^2 + AN^2 = x^2 + x^2$, and in $\triangle BNK$, $NK^2 = BN^2 + BK^2 = y^2 + y^2$. Since MK is a diagonal of rectangle KLMN, then by the Pythagorean Theorem we have

$$MK^{2} = MN^{2} + NK^{2}$$

= $x^{2} + x^{2} + y^{2} + y^{2}$
= $x^{2} + y^{2} + x^{2} + y^{2}$
= $50 + 50$
= 100

Since MK > 0, we have MK = 10 cm.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution 2

In $\triangle AMN$, $MN^2 = x^2 + x^2 = 2x^2$. Therefore, $MN = \sqrt{2}x$, since x > 0. In $\triangle BNK$, $NK^2 = y^2 + y^2 = 2y^2$. Therefore, $NK = \sqrt{2}y$, since y > 0.

Since MK is a diagonal of rectangle KLMN, then by the Pythagorean Theorem we have

$$MK^{2} = MN^{2} + NK^{2}$$

= $(\sqrt{2}x)^{2} + (\sqrt{2}y)^{2}$
= $2x^{2} + 2y^{2}$
= $2(x^{2} + y^{2})$
= $2(50)$
= 100

Since MK > 0, we have MK = 10 cm.

Solution 3

We construct the line segment KP, where P lies on AD such that KP is perpendicular to AD.

Then APKB is a rectangle. Furthermore, AP = BK = y, PK = AB = x + y, and PM = AM - AP = x - y.

Since $\triangle PKM$ is a right-angled triangle, by the Pythagorean Theorem we have

$$MK^{2} = PM^{2} + PK^{2}$$

= $(x - y)^{2} + (x + y)^{2}$
= $x^{2} - 2xy + y^{2} + x^{2} + 2xy + y^{2}$
= $2x^{2} + 2y^{2}$
= $2(x^{2} + y^{2})$
= $2(50)$
= 100

Since MK > 0, we have MK = 10 cm.