

Problem of the Week Problem E and Solution
 Diagonal Distance

Problem

Square $A B C D$ has K on $B C, L$ on $D C, M$ on $A D$, and N on $A B$ such that $K L M N$ forms a rectangle, $\triangle A M N$ and $\triangle L K C$ are congruent isosceles triangles, and also $\triangle M D L$ and $\triangle B N K$ are congruent isosceles triangles. If the total area of the four triangles is $50 \mathrm{~cm}^{2}$, what is the length of $M K$?

Solution

Let x represent the lengths of the equal sides of $\triangle A M N$ and $\triangle L K C$, and let y represent the lengths of the equal sides of $\triangle M D L$ and $\triangle B N K$.

Thus, area $\triangle A M N=$ area $\triangle L K C=\frac{1}{2} x^{2}$, and area $\triangle M D L=$ area $\triangle B N K=\frac{1}{2} y^{2}$.
Therefore, the total area of the four triangles is equal to $\frac{1}{2} x^{2}+\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\frac{1}{2} y^{2}=x^{2}+y^{2}$.
Since we're given that this area is $50 \mathrm{~cm}^{2}$, we have $x^{2}+y^{2}=50$.
Three different solutions to find the length of $M K$ are provided.

Solution 1

In $\triangle A M N, M N^{2}=A M^{2}+A N^{2}=x^{2}+x^{2}$, and in $\triangle B N K, N K^{2}=B N^{2}+B K^{2}=y^{2}+y^{2}$.
Since $M K$ is a diagonal of rectangle $K L M N$, then by the Pythagorean Theorem we have

$$
\begin{aligned}
M K^{2} & =M N^{2}+N K^{2} \\
& =x^{2}+x^{2}+y^{2}+y^{2} \\
& =x^{2}+y^{2}+x^{2}+y^{2} \\
& =50+50 \\
& =100
\end{aligned}
$$

Since $M K>0$, we have $M K=10 \mathrm{~cm}$.

Solution 2

In $\triangle A M N, M N^{2}=x^{2}+x^{2}=2 x^{2}$. Therefore, $M N=\sqrt{2} x$, since $x>0$.
In $\triangle B N K, N K^{2}=y^{2}+y^{2}=2 y^{2}$. Therefore, $N K=\sqrt{2} y$, since $y>0$.
Since $M K$ is a diagonal of rectangle $K L M N$, then by the Pythagorean Theorem we have

$$
\begin{aligned}
M K^{2} & =M N^{2}+N K^{2} \\
& =(\sqrt{2} x)^{2}+(\sqrt{2} y)^{2} \\
& =2 x^{2}+2 y^{2} \\
& =2\left(x^{2}+y^{2}\right) \\
& =2(50) \\
& =100
\end{aligned}
$$

Since $M K>0$, we have $M K=10 \mathrm{~cm}$.

Solution 3

We construct the line segment $K P$, where P lies on $A D$ such that $K P$ is perpendicular to $A D$. Then $A P K B$ is a rectangle. Furthermore, $A P=B K=y, P K=A B=x+y$, and $P M=A M-A P=x-y$.

Since $\triangle P K M$ is a right-angled triangle, by the Pythagorean Theorem we have

$$
\begin{aligned}
M K^{2} & =P M^{2}+P K^{2} \\
& =(x-y)^{2}+(x+y)^{2} \\
& =x^{2}-2 x y+y^{2}+x^{2}+2 x y+y^{2} \\
& =2 x^{2}+2 y^{2} \\
& =2\left(x^{2}+y^{2}\right) \\
& =2(50) \\
& =100
\end{aligned}
$$

Since $M K>0$, we have $M K=10 \mathrm{~cm}$.

