Problem

A three-digit positive integer n has the property that when 2024 is divided by n, the remainder is 4 . What is the sum of all such three-digit positive integers n ?

Solution

Let p be the quotient when 2024 is divided by n. Since the remainder is 4 , it follows that $n p+4=2024$. Thus, $n p=2020$.

Using the prime factorization of 2020 we obtain $2020=2 \times 2 \times 5 \times 101$. From this we can determine all the possible pairs of positive integers that multiply to 2020. These are summarized below.

$$
1 \times 2020, \quad 2 \times 1010, \quad 4 \times 505, \quad 5 \times 404, \quad 10 \times 202, \quad 20 \times 101
$$

Since n is a three-digit positive integer, it follows that the only possible values for n are 101, 202, 404, or 505 . The sum of these is $101+202+404+505=1212$.

