

Problem of the Week
Problem D and Solution
Arranging Tiles 2

Problem

Hugo has a box of tiles, each with an integer from 1 to 9 on it. Each integer appears on at least six tiles. Hugo creates larger numbers by placing tiles side by side. For example, using the tiles 3 and 7, Hugo can create the 2-digit number 37 or 73 . Using six of his tiles, Hugo forms two 3-digit numbers that add to 1234 . He then records the sum of the digits on the six tiles. How many different possible sums are there?

Solution

We will use the letters A, B, C, D, E, and F to represent the integers on the six chosen tiles, letting the two 3 -digit numbers be $A B C$ and $D E F$.
To solve this problem, we will look at each column starting with the units, then tens, and then finally the hundreds column.

1234

Since $C+F$ ends in a 4 , then $C+F=4$ or $C+F=14$. The value of $C+F$ cannot be 20 or more, because C and F are digits. In the case that $C+F=14$, we "carry" a 1 to the tens column. Now we will look at the tens column for these two cases.

- Case 1: $C+F=4$

Since the result in the tens column is 3 and there was no "carry" from the units column, it follows that $B+E$ ends in a 3 . Then $B+E=3$ or $B+E=13$. The value of $B+E$ cannot be 20 or more, because B and E are digits. In the case that $B+E=13$, we "carry" a 1 to the hundreds column.

- Case 2: $C+F=14$

Since the result in the tens column is 3 and there was a "carry" from the units column, it follows that $1+B+E$ ends in a 3 , so $B+E$ ends in a 2 . Then $B+E=2$ or $B+E=12$. The value of $B+E$ cannot be 20 or more, because B and E are digits. In the case that $B+E=12$, we "carry" a 1 to the hundreds column.

Since the result in the hundreds column is 12 , then $A+D=12$, or in the case when there was a "carry" from the tens column, $1+A+D=12$, so $A+D=11$.

We summarize this information in the following tree.

Notice that if we add the three values along each of the four branches of the tree, we obtain the sum $(C+F)+(B+E)+(A+D)$, which is equal to $A+B+C+D+E+F$.

- The first branch has the sum $4+3+12=19$.
- The second branch has the sum $4+13+11=28$.
- The third branch has the sum $14+2+12=28$.
- The fourth branch has the sum $14+12+11=37$.

Therefore, there are 3 different values for the sum of the six digits. They are 19,28 , and 37.

Indeed, we can find values for the six digits that achieve each of these sums, as shown.

sum of 19				sum of 28				sum of 37			
	9	2	1		7	9	2		3	5	8
$+$	3	1	3		+ 4	4	2		+ 8	7	6
	2	3			12	3			12	3	4

