Problem of the Week Problem D and Solution
 Throw to Win

Problem

Kurtis is creating a game for a math fair. They attach n circles, each with radius 1 metre, onto a square wall with side length n metres, where n is a positive integer, so that none of the circles overlap. Participants will throw a dart at the wall and if the dart lands on a circle, they win a prize. Kurtis wants the probability of winning the game to be at least $\frac{1}{2}$.
If they assume that each dart hits the wall at a single random point, then what is the largest possible value of n ?

Solution

The area of the square wall with side length n metres is n^{2} square metres.
The area of each circle is $\pi(1)^{2}=\pi$ square metres. Since there are n circles, the total area covered by circles is $n \pi$ square metres.

If each dart hits the wall at a single random point, then the probability that a dart lands on a circle is equal to the area of the wall covered by circles divided by the total area of the wall. That is,

$$
\frac{n \pi \text { square metres }}{n^{2} \text { square metres }}=\frac{\pi}{n}
$$

If this probability must be at least $\frac{1}{2}$, then

$$
\begin{aligned}
\frac{\pi}{n} & \geq \frac{1}{2} \\
\pi & \geq \frac{n}{2}, \quad \text { since } n>0 \\
2 \pi & \geq n \\
n & \leq 2 \pi \approx 6.28
\end{aligned}
$$

Thus, since n is an integer, the largest possible value of n is 6 .

