Problem of the Week
Problem D and Solution
Number Display

Problem

Helena's Hardware Store is clearing out a particular style of single digits that are used for house numbers. There are currently only five 5 s , four 4 s , three 3 s , and two 2 s left.
How many different three-digit house numbers can be made using these single digits?

Solution

Solution 1

Let's suppose that there were three or more 2 s available. For the first digit, the customer could choose from the digits $5,4,3$, and 2 . Therefore, there would be 4 choices for the first digit. Similarly, there would be 4 choices for the second digit, and 4 choices for the third digit. This would give $4 \times 4 \times 4=64$ possible three-digit house numbers that could be made.
However, there are actually only two 2 s available, so not all of these house numbers can be made. In particular, the house number 222 cannot be made, but all others can.

Therefore, $64-1=63$ different three-digit house numbers can be made using these single digits.

Solution 2

Let's look at three different cases.
Case 1: All three digits in the house number are the same
The house number could then be 555,444 , or 333 . The number 222 cannot be made since only two 2 s are available. Therefore, there are 3 three-digit house numbers with all three digits the same.
Case 2: Two digits are the same and the third digit is different
There are 4 choices for the digits that are the same, namely $5,4,3$, and 2 . For each of these possible choices, there are 3 choices for the third different digit. For example, if two of the digits are 5 , then the third digit could be 4,3 , or 2 . Therefore, there are $4 \times 3=12$ ways to choose the digits. For each of these choices, there are 3 ways to arrange the digits. For example, suppose the digits are a, a, and b. The house number could be $a a b, a b a$, or $b a a$. Therefore, there are $12 \times 3=36$ three-digit house numbers with two digits the same and one different.

Case 3: All three digits are different
The customer has 4 choices for the first digit, namely $5,4,3$, or 2 . Once that digit is chosen, there are 3 choices for the second digit. Once the first and second digits are chosen, there are 2 choices for the third digit. Therefore, there are $4 \times 3 \times 2=24$ three-digit house numbers with all three digits different.

Therefore, $3+36+24=63$ different three-digit house numbers can be made using these single digits.

