

Problem of the Week Problem D and Solution Overlapping Shapes 2

Problem

Selena draws square $A B C D$ with side length 16 cm . Endre then draws $\triangle A E D$ on top of square $A B C D$ so that

- sides $A E$ and $D E$ meet $B C$ at F and G, respectively, and
- the area of $\triangle A E D$ is twice the area of square $A B C D$.

Determine the area of trapezoid $A F G D$.

Solution

We construct an altitude of $\triangle A E D$ from E, intersecting $A D$ at P and $B C$ at Q. Since $A B C D$ is a square, we know that $A D$ is parallel to $B C$. Therefore, since $P E$ is perpendicular to $A D, Q E$ is perpendicular to $F G$ and thus an altitude of $\triangle F E G$.

The area of square $A B C D$ is $16 \times 16=256 \mathrm{~cm}^{2}$. Since the area of $\triangle A E D$ is twice the area of square $A B C D$, it follows that the area of $\triangle A E D$ is $2 \times 256=512 \mathrm{~cm}^{2}$.

We also know that

$$
\text { Area } \begin{aligned}
\triangle A E D & =A D \times P E \div 2 \\
512 & =16 \times P E \div 2 \\
512 & =8 \times P E \\
P E & =512 \div 8 \\
& =64 \mathrm{~cm}
\end{aligned}
$$

Since $\angle A P Q=90^{\circ}$, we know that $A B Q P$ is a rectangle, and so $P Q=A B=16$ cm . We also know that $P E=P Q+Q E$. Since $P E=64 \mathrm{~cm}$ and $P Q=16 \mathrm{~cm}$, it follows that $Q E=P E-P Q=64-16=48 \mathrm{~cm}$.
From here we proceed with two different solutions.

Solution 1

We will use the relationships between the areas of the shapes to determine the length of $F G$.

$$
\begin{aligned}
\text { Area of trapezoid } A F G D+\text { Area } \triangle F E G & =\text { Area } \triangle A E D \\
(A D+F G) \times A B \div 2+F G \times Q E \div 2 & =512 \\
(16+F G) \times 16 \div 2+F G \times 48 \div 2 & =512 \\
(16+F G) \times 8+24 \times F G & =512 \\
128+8 F G+24 F G & =512 \\
32 F G & =384 \\
F G & =12 \mathrm{~cm}
\end{aligned}
$$

Now we can use $F G$ to calculate the area of trapezoid $A F G D$.

$$
\text { Area of trapezoid } \begin{aligned}
A F G D & =(A D+F G) \times A B \div 2 \\
& =(16+12) \times 16 \div 2 \\
& =28 \times 8=224 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of trapezoid $A F G D$ is $224 \mathrm{~cm}^{2}$.

Solution 2

We will use similar triangles to determine the length of $F G$. We know that $\angle A E D=\angle F E G$. Also, since $A D$ is parallel to $F G$ it follows that $\angle E A D$ and $\angle E F G$ are corresponding angles, so are equal. Thus, by angle-angle similarity, $\triangle A E D \sim \triangle F E G$. Therefore,

$$
\begin{aligned}
\frac{A D}{P E} & =\frac{F G}{Q E} \\
\frac{16}{64} & =\frac{F G}{48} \\
\frac{1}{4} & =\frac{F G}{48} \\
F G & =48 \times \frac{1}{4}=12 \mathrm{~cm}
\end{aligned}
$$

Now we can use $F G$ to calculate the area of trapezoid $A F G D$.

$$
\text { Area of trapezoid } \begin{aligned}
A F G D & =(A D+F G) \times A B \div 2 \\
& =(16+12) \times 16 \div 2 \\
& =28 \times 8=224 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of trapezoid $A F G D$ is $224 \mathrm{~cm}^{2}$.

