Problem of the Week Problem D and Solution
 Find that Angle

Problem

A circle with centre C has a diameter $P Q$ and radius $C S$. Chord $P R$ intersects $C S$ and chord $S Q$ at A and B, respectively. If $\angle C A P=90^{\circ}, \angle R P Q=24^{\circ}$, and $\angle Q B R=x^{\circ}$, then determine the value of x.

Solution

Solution 1

Since the angles in a triangle sum to 180°, in $\triangle C A P, \angle A C P=180^{\circ}-90^{\circ}-24^{\circ}=66^{\circ}$.
Since $P Q$ is a diameter, $P C Q$ is therefore a straight line. Thus, $\angle A C P+\angle Q C S=180^{\circ}$, and so $\angle Q C S=180^{\circ}-\angle A C P=180^{\circ}-66^{\circ}=114^{\circ}$.
Since $C S$ and $C Q$ are radii of the circle, we have $C S=C Q$. It follows that $\triangle C S Q$ is isosceles and $\angle C Q S=\angle C S Q$. Since the angles in a triangle sum to 180°, we have $\angle C S Q+\angle C Q S+\angle Q C S=180^{\circ}$, and since $\angle C Q S=\angle C S Q$, this gives

$$
\begin{aligned}
2 \angle C S Q+114^{\circ} & =180^{\circ} \\
2 \angle C S Q & =66^{\circ} \\
\angle C S Q & =33^{\circ}
\end{aligned}
$$

Opposite angles are equal, so it follows that $\angle S B A=\angle Q B R=x^{\circ}$ and $\angle S A B=\angle C A P=90^{\circ}$. In $\triangle A B S, \angle S B A+\angle S A B+\angle A S B=180^{\circ}$. Since $\angle A S B=\angle C S Q=33^{\circ}$, we have

$$
\begin{aligned}
x^{\circ}+90^{\circ}+33^{\circ} & =180^{\circ} \\
x+123 & =180 \\
x & =57
\end{aligned}
$$

Therefore, $x=57$.

Solution 2

This solution will use the exterior angle theorem. In a triangle, the angle formed at a vertex between one side of the triangle and the extension of the other side of the triangle is called an exterior angle.

The exterior angle theorem state that the measure of an exterior angle of a triangle is equal to the sum of the two opposite interior angles.
For example, in the diagram shown, $\angle X Z W$ is exterior to $\triangle X Y Z$. The exterior angle theorem states that $r^{\circ}=p^{\circ}+q^{\circ}$.

Since the angles in a triangle sum to 180°, in $\triangle C A P, \angle A C P=180^{\circ}-90^{\circ}-24^{\circ}=66^{\circ}$.
Since $C S$ and $C Q$ are radii of the circle, we have $C S=C Q$. It follows that $\triangle C S Q$ is isosceles and $\angle C Q S=\angle C S Q$. Since $\angle A C P$ is exterior to $\triangle C S Q$, by the exterior angle theorem,

$$
\begin{aligned}
\angle A C P & =\angle C Q S+\angle C S Q \\
66^{\circ} & =2 \angle C Q S \\
\angle C S Q & =33^{\circ}
\end{aligned}
$$

Since $\angle Q B R$ is exterior to $\triangle B Q P$, by the exterior angle theorem, $\angle Q B R=\angle B P Q+\angle B Q P$. Since $\angle Q B R=x^{\circ}, \angle B P Q=\angle R P Q$ (same angle), and $\angle B Q P=\angle C Q S$ (same angle), this gives

$$
\begin{aligned}
x^{\circ} & =\angle R P Q+\angle C Q S \\
x & =24+33 \\
x & =57
\end{aligned}
$$

Therefore, $x=57$.

Solution 3

This solution uses the exterior angle theorem from Solution 2, as well as the angle subtended by an arc theorem. This theorem states that the measure of the angle subtended by an arc at the centre is equal to two times the measure of the angle subtended by the same arc at any point on the remaining part of the circle.

Since $\angle S C P$ is the angle at the centre subtended by arc $S P$, and $\angle S Q P$ is an angle subtended by that same arc but on the circle, we know that $\angle S C P=2 \angle S Q P$.
Since the angles in a triangle sum to 180°, in $\triangle C A P, \angle A C P=180^{\circ}-90^{\circ}-24^{\circ}=66^{\circ}$. Thus, since $\angle S C P=\angle A C P$ (same angle), we have $\angle S C P=\angle A C P=66^{\circ}$. Therefore, $\angle S C P=2 \angle S Q P$ gives $66^{\circ}=2 \angle S Q P$, and thus $\angle S Q P=33^{\circ}$.
Since $\angle Q B R$ is exterior to $\triangle B Q P$, by the exterior angle theorem, $\angle Q B R=\angle B P Q+\angle B Q P$. Since $\angle Q B R=x^{\circ}, \angle B P Q=\angle R P Q$ (same angle), and $\angle B Q P=\angle S Q P$ (same angle), this gives

$$
\begin{aligned}
x^{\circ} & =\angle R P Q+\angle S Q P \\
x & =24+33 \\
x & =57
\end{aligned}
$$

Therefore, $x=57$.

