

Problem of the Week Problem D and Solution
 Square Parts

Problem

Square $P Q R S$ has W on $P Q, U$ on $Q R, T$ on $P S$, and V on $T U$ such that $Q U V W$ is a square, and $P W V T$ and $R S T U$ are rectangles.

The side length of square $P Q R S$ is 9 cm , and

$$
\text { area of } Q U V W-\text { area of } R S T U=\text { area of } R S T U-\text { area of } P W V T
$$

If square $Q U V W$ has side length equal to $x \mathrm{~cm}$, determine the value of x and the areas of rectangles $P W V T$ and $R S T U$.

Solution

We know $S R=P Q=9 \mathrm{~cm}$ and $W Q=Q U=x \mathrm{~cm}$.
Therefore, $P W=P Q-W Q=(9-x) \mathrm{cm}$. Similarly, $U R=(9-x) \mathrm{cm}$.

Thus, we have that the area of $Q U V W$ is equal to $x^{2} \mathrm{~cm}^{2}$, the area of $R S T U$ is equal to $9(9-x) \mathrm{cm}^{2}$, and the area of $P W V T$ is equal to $x(9-x) \mathrm{cm}^{2}$.

Therefore, we know that

$$
\text { area of QUVW - area of } R S T U=\text { area of } R S T U-\text { area of } P W V T ~=\begin{aligned}
x^{2}-9(9-x) & =9(9-x)-x(9-x) \\
x^{2}-81+9 x & =81-9 x-9 x+x^{2} \\
27 x & =162 \\
x & =6
\end{aligned}
$$

Therefore, $x=6 \mathrm{~cm}$, the area of $P W V T$ is equal to $x(9-x)=6(9-6)=18 \mathrm{~cm}^{2}$, and the area of $R S T U=9(9-x)=9(9-6)=27 \mathrm{~cm}^{2}$.

