

Problem of the Week Problem C and Solution And the Numbers Are...

Problem

John and Betty each choose a positive integer that is greater than 1. Betty increases her number by 1 . John then takes this new number and multiplies it by his number. This product is equal to 260 .

If Betty's number is larger than John's number, determine all possible pairs of integers that John and Betty could have chosen.

Solution

Let John's integer be j and Betty's integer be b. We're given $j \times(b+1)=260$. In considering the equation $j \times(b+1)=260$, we are looking for two integers, each greater than 1 , that multiply to 260 . We also want Betty's integer b to be greater than John's integer j.

We generate the following list of ways to factor 260 as a product of two integers:

$$
1 \times 260,2 \times 130,4 \times 65,5 \times 52,10 \times 26,13 \times 20
$$

We can exclude $260=1 \times 260$ because both integers must be greater than 1 .
Since Betty's integer is larger than John's integer, we get the following possibilities:

- $j=2$ and $b+1=130$. Thus, $j=2$ and $b=129$.
- $j=4$ and $b+1=65$. Thus, $j=4$ and $b=64$.
- $j=5$ and $b+1=52$. Thus, $j=5$ and $b=51$.
- $j=10$ and $b+1=26$. Thus, $j=10$ and $b=25$.
- $j=13$ and $b+1=20$. Thus, $j=13$ and $b=19$.

Therefore, there are five pairs of integers that John and Betty could have chosen. John could have chosen 2 and Betty chose 129, John could have chosen 4 and Betty chose 64, John could have chosen 5 and Betty chose 51, John could have chosen 10 and Betty chose 25, or John could have chosen 13 and Betty chose 19.

