

Problem of the Week
 Problem C and Solution
 Arranging Tiles 1

Problem

Ana has nine tiles, each with a different integer from 1 to 9 on it. Ana creates larger numbers by placing tiles side by side. For example, using the tiles 3 and 7 , Ana can create the 2 -digit number 37 or 73 . Using six of her tiles, Ana forms two 3 -digit numbers that add to 1000 . What is the largest possible 3-digit number that she could have used?

Solution

We will use the letters A, B, C, D, E, and F to represent the integers on the six chosen tiles, letting the two 3-digit numbers be $A B C$ and $D E F$. Then we will determine the largest possible 3-digit number $A B C$.

1000

Looking at the ones column, since C and F are both digits from 1 to 9 and add to a number that ends in 0 , their sum must be 10 . (Their sum cannot be zero since neither C nor F is zero, and their sum cannot be 20 or more since C and F are each less than 10.) Thus, $C+F=10$. Therefore, there is a carry of 1 into the tens column. Similarly, the sum in the tens column must also be 10 , so $B+E+1=10$, or $B+E=9$. Therefore, there is a carry of 1 into the hundreds column. Thus, $A+D+1=10$, or $A+D=9$.

To determine the largest possible 3 -digit number $A B C, A$ must be as large as possible. We have the following tiles: $1,2,3,4,5,6,7,8$, and 9 . Since $A+D=9, A$ is largest when $A=8$ and $D=1$.

The next step is to make B as large as possible. We are left with the following tiles: $2,3,4,5,6,7$, and 9 . Since $B+E=9, B$ is largest when $B=7$ and $E=2$.

Finally, we need to make C as large as possible. We are left with the following tiles: $3,4,5,6$, and 9 . Since $C+F=10$, then C is largest when $C=6$ and $F=4$.

Therefore, the largest possible 3-digit number $A B C$ is 876 .
Indeed, we can check that when $A B C$ is 876 , we have $D E F$ equal to 124 , and $A B C+D E F=876+124=1000$.

