Problem of the Week
 Problem C and Solution
 Intersecting Triangles

Problem

$\triangle A B C$ and $\triangle P Q R$ are equilateral triangles with vertices B and P on line segment $M N$. The triangles intersect at two points, X and Y, as shown.

If $\angle N P Q=75^{\circ}$ and $\angle M B A=65^{\circ}$, determine the measure of $\angle C X Y$.

Solution

In any equilateral triangle, all sides are equal in length and each angle measures 60°.
Since $\triangle A B C$ and $\triangle P Q R$ are equilateral,
$\angle A B C=\angle A C B=\angle C A B=\angle Q P R=\angle P R Q=\angle R Q P=60^{\circ}$.
Since the angles in a straight line sum to 180°, we have
$180^{\circ}=\angle M B A+\angle A B C+\angle Y B P=65^{\circ}+60^{\circ}+\angle Y B P$.
Rearranging, we have $\angle Y B P=180^{\circ}-65^{\circ}-60^{\circ}=55^{\circ}$.
Similarly, since angles in a straight line sum to 180°, we have
$180^{\circ}=\angle N P Q+\angle Q P R+\angle Y P B=75^{\circ}+60^{\circ}+\angle Y P B$.
Rearranging, we have $\angle Y P B=180^{\circ}-75^{\circ}-60^{\circ}=45^{\circ}$.
Since the angles in a triangle sum to 180°, in $\triangle B Y P$ we have
$\angle Y P B+\angle Y B P+\angle B Y P=180^{\circ}$, and so $45^{\circ}+55^{\circ}+\angle B Y P=180^{\circ}$.
Rearranging, we have $\angle B Y P=180^{\circ}-45^{\circ}-55^{\circ}=80^{\circ}$.
When two lines intersect, vertically opposite angles are equal. Since $\angle X Y C$ and $\angle B Y P$ are vertically opposite angles, we have $\angle X Y C=\angle B Y P=80^{\circ}$.

Again, since angles in a triangle sum to 180°, in $\triangle X Y C$ we have
$\angle X Y C+\angle X C Y+\angle C X Y=180^{\circ}$. We have already found that $\angle X Y C=80^{\circ}$, and since
$\angle X C Y=\angle A C B$, we have $\angle X C Y=60^{\circ}$. So, $\angle X Y C+\angle X C Y+\angle C X Y=180^{\circ}$ becomes
$80^{\circ}+60^{\circ}+\angle C X Y=180^{\circ}$. Rearranging, we have $\angle C X Y=180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ}$.
Therefore, $\angle C X Y=40^{\circ}$.

