Problem of the Week Problem C and Solution Intersecting Triangles

Problem

 $\triangle ABC$ and $\triangle PQR$ are equilateral triangles with vertices B and P on line segment MN. The triangles intersect at two points, X and Y, as shown.

Solution

In any equilateral triangle, all sides are equal in length and each angle measures 60° .

Since $\triangle ABC$ and $\triangle PQR$ are equilateral, $\angle ABC = \angle ACB = \angle CAB = \angle QPR = \angle PRQ = \angle RQP = 60^{\circ}.$

Since the angles in a straight line sum to 180° , we have $180^{\circ} = \angle MBA + \angle ABC + \angle YBP = 65^{\circ} + 60^{\circ} + \angle YBP$. Rearranging, we have $\angle YBP = 180^{\circ} - 65^{\circ} - 60^{\circ} = 55^{\circ}$.

Similarly, since angles in a straight line sum to 180° , we have $180^{\circ} = \angle NPQ + \angle QPR + \angle YPB = 75^{\circ} + 60^{\circ} + \angle YPB$. Rearranging, we have $\angle YPB = 180^{\circ} - 75^{\circ} - 60^{\circ} = 45^{\circ}$.

Since the angles in a triangle sum to 180° , in $\triangle BYP$ we have $\angle YPB + \angle YBP + \angle BYP = 180^{\circ}$, and so $45^{\circ} + 55^{\circ} + \angle BYP = 180^{\circ}$. Rearranging, we have $\angle BYP = 180^{\circ} - 45^{\circ} - 55^{\circ} = 80^{\circ}$.

When two lines intersect, vertically opposite angles are equal. Since $\angle XYC$ and $\angle BYP$ are vertically opposite angles, we have $\angle XYC = \angle BYP = 80^{\circ}$.

Again, since angles in a triangle sum to 180° , in $\triangle XYC$ we have $\angle XYC + \angle XCY + \angle CXY = 180^{\circ}$. We have already found that $\angle XYC = 80^{\circ}$, and since $\angle XCY = \angle ACB$, we have $\angle XCY = 60^{\circ}$. So, $\angle XYC + \angle XCY + \angle CXY = 180^{\circ}$ becomes $80^{\circ} + 60^{\circ} + \angle CXY = 180^{\circ}$. Rearranging, we have $\angle CXY = 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ}$.

Therefore, $\angle CXY = 40^{\circ}$.