

Problem of the Week
 Problem C and Solution
 Stargazing

Problem

In a distant solar system, four different comets: Hypatia, Fibonacci, Lovelace, and Euclid, passed by the planet Ptolemy in 2023. On Ptolemy, it is known that the Hypatia comet appears every 3 years, the Fibonacci comet appears every 6 years, the Lovelace comet appears every 8 years, and the Euclid comet appears every 15 years.

When is the next year that all four comets will pass by Ptolemy?

Solution

Since the Hypatia comet appears every 3 years, it will pass by Ptolemy in the following numbers of years: $3,6,9,12,15,18,21,24,27,30 \ldots$

Since the Fibonacci comet appears every 6 years, it will pass by Ptolemy in the following numbers of years: $6,12,18,24,30, \ldots$.

Therefore, both the Hypatia and Fibonacci comets will pass by Ptolemy in the following numbers of years: $6,12,18,24,30, \ldots$.

This happens because these numbers are common multiples of 3 and 6 . If we want to determine when all four comets next pass by Ptolemy, we need to find the least common multiple (LCM) of $3,6,8$, and 15 . We shall do this in two ways.

Solution 1

The first way to find the LCM is to list the positive multiples of $3,6,8$, and 15 , until we find a common multiple in each list.

Number	Positive Multiples
3	$3,6,9,12,15,18,21, \ldots, 108,111,114,117, \mathbf{1 2 0}, 123, \ldots$
6	$6,12,18,24,30,36,42, \ldots, 96,102,108,114, \mathbf{1 2 0}, 126, \ldots$
8	$8,16,24,32,40,48,56, \ldots, 104,112,120,128, \ldots$
15	$15,30,45,60,75,90,105, \mathbf{1 2 0}, 135, \ldots$

Thus, the LCM of $3,6,8$, and 15 is 120 . Therefore, the next time all four planets will pass by Ptolemy is in 120 years. This will be the year 2143.

Solution 2

The second way to determine the LCM is to rewrite $3,6,8$, and 15 as a prime or a product of prime numbers. (This is known as prime factorization.)

- $3=3$
- $6=2 \times 3$
- $8=2 \times 2 \times 2$
- $15=3 \times 5$

The LCM is calculated by determining the greatest number of each prime number in any of the factorizations (here we will have three 2 s , one 3 , and one 5), and then multiplying these numbers together. This gives $2 \times 2 \times 2 \times 3 \times 5=120$. Therefore, the next time all four planets will pass by Ptolemy is in 120 years. This will be the year 2143 .
Note: The second method is a more efficient way to find the LCM, especially when the numbers are quite large.

