Problem of the Week Problem C and Solution Overlapping Shapes 1

Problem

Omar draws square $A B C D$ with side length 4 cm . Jaime then draws $\triangle A E D$ on top of square $A B C D$ so that

- sides $A E$ and $D E$ meet $B C$ at F and G, respectively,
- $F G$ is 3 cm , and
- the area of $\triangle A E D$ is twice the area of square $A B C D$.

Determine the area of $\triangle F E G$.

Solution

Solution 1

In the first solution we will find the area of square $A B C D$, the area of $\triangle A E D$, the area of trapezoid $A F G D$, and then use these to calculate the area of $\triangle F E G$.

The area of square $A B C D$ is $4 \times 4=16 \mathrm{~cm}^{2}$. Since the area of $\triangle A E D$ is twice the area of square $A B C D$, it follows that the area of $\triangle A E D$ is $2 \times 16=32 \mathrm{~cm}^{2}$. Recall that to find the area of a trapezoid, we multiply the sum of the lengths of the two parallel sides by the height, and divide the product by 2 . In trapezoid $A F G D$, the two parallel sides are $A D$ and $F G$, and the height is the width of square $A B C D$, namely $A B$.

$$
\text { Area of trapezoid } \begin{aligned}
A F G D & =(A D+F G) \times A B \div 2 \\
& =(4+3) \times 4 \div 2 \\
& =7 \times 4 \div 2 \\
& =14 \mathrm{~cm}^{2}
\end{aligned}
$$

The area of $\triangle F E G$ is equal to the area of $\triangle A E D$ minus the area of trapezoid $A F G D$. Thus, the area of $\triangle F E G$ is $32-14=18 \mathrm{~cm}^{2}$.

Solution 2

We construct an altitude of $\triangle A E D$ from E, intersecting $A D$ at P and $B C$ at Q. Since $A B C D$ is a square, we know that $A D$ is parallel to $B C$. Therefore, since $P E$ is perpendicular to $A D, Q E$ is perpendicular to $F G$ and thus an altitude of $\triangle F E G$. In this solution we will find the height of $\triangle F E G$, that is, the length of $Q E$, and then use this to calculate the area of $\triangle F E G$.

The area of square $A B C D$ is $4 \times 4=16 \mathrm{~cm}^{2}$. Since the area of $\triangle A E D$ is twice the area of square $A B C D$, it follows that the area of $\triangle A E D$ is $2 \times 16=32 \mathrm{~cm}^{2}$. We also know that

$$
\text { Area } \begin{aligned}
\triangle A E D & =A D \times P E \div 2 \\
32 & =4 \times P E \div 2 \\
32 & =2 \times P E \\
P E & =32 \div 2 \\
& =16 \mathrm{~cm}
\end{aligned}
$$

Since $\angle A P Q=90^{\circ}$, we know that $A B Q P$ is a rectangle, and so $P Q=A B=4$ cm . We also know that $P E=P Q+Q E$. Since $P E=16 \mathrm{~cm}$ and $P Q=4 \mathrm{~cm}$, it follows that $Q E=P E-P Q=16-4=12 \mathrm{~cm}$. We can then calculate the area of $\triangle F E G$.

$$
\text { Area } \begin{aligned}
\triangle F E G & =F G \times Q E \div 2 \\
& =3 \times 12 \div 2 \\
& =18 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of $\triangle F E G$ is $18 \mathrm{~cm}^{2}$.

