Problem of the Week
 Problem B and Solution
 Triangular Fun

Problem

Work through the parts that follow using the following coordinate plane, where grid lines are spaced 1 unit apart.

(a) Label the coordinates of the points A, O, and B.
(b) Plot point C on the y-axis so that $O C$ is twice the length of $O A$. Then plot point D on the x-axis so that $O D$ is twice the length of $O B$. Label the coordinates of points C and D.
(c) Show that the area of $\triangle C O D$ is four times the area of $\triangle A O B$. To show this, you may use your diagram or an area formula.

Extension: In general, if you double the lengths of the two perpendicular sides of any right-angled triangle, will the area of the new triangle be four times the area of the original triangle? Explain.

Not printing this page? You can use our interactive worksheet.

Solution

(a) The coordinates are $A(0,4), O(0,0)$, and $B(3,0)$.
(b) Points C and D are plotted on the diagram, and their coordinates are $C(0,8)$ and $D(6,0)$, as shown.

(c) The diagram shows $\triangle C O D$ divided into four smaller right-angled triangles, each congruent to $\triangle A O B$, with perpendicular sides of length 3 and 4 . Therefore, the area of $\triangle C O D$ is four times the area of $\triangle A O B$.

Alternatively, we can calculate the areas of $\triangle A O B$ and $\triangle C O D$ using the area formula: Area $=$ base \times height $\div 2$.

$$
\text { Area of } \begin{aligned}
\triangle A O B & =3 \times 4 \div 2 & \text { Area of } \triangle C O D & =6 \times 8 \div 2 \\
& =12 \div 2 & & =48 \div 2 \\
& =6 & & =24
\end{aligned}
$$

Since $6 \times 4=24$, the area of $\triangle C O D$ is four times the area of $\triangle A O B$.

Extension Solution:

We will start with a right-angled triangle where the two perpendicular sides have lengths of x and y. We then create four copies of this triangle, numbered from 1 to 4 , and arrange them as shown. The total area of the four triangles is four times the area of the original triangle.

Now, if we rotate triangle 2 by 180°, the four triangles will be in the shape of a larger right-angled triangle where the lengths of the two perpendicular sides are $2 x$ and $2 y$. Thus, if you double the lengths of the two perpendicular sides of any right-angled triangle, the area of the new triangle will be four times the area of the original triangle.

