Problem of the Week
Problem D and Solution
Repetition By Product

Problem

A positive integer is to be placed in each box. Integers may be repeated, but the product of any four adjacent integers is always 120. Determine all possible values for \(x \).

Solution

In both solutions, let \(a_1 \) be the integer placed in the first box, \(a_2 \) the integer placed in the second box, \(a_4 \) the integer placed in the fourth box, and so on, as shown below.

\[
\begin{array}{cccccccc}
& a_1 & a_2 & 2 & a_4 & a_5 & 4 & x & a_{10} & a_{11} & 3 & a_{13} & a_{14} \\
\end{array}
\]

Solution 1

Consider boxes 3 to 6. Since the product of any four adjacent integers is 120, we have
\(2 \times a_4 \times a_5 \times 4 = 120 \). Therefore, \(a_4 \times a_5 = \frac{120}{2 \times 4} = 15 \). Since \(a_4 \) and \(a_5 \) are positive integers, there are 4 possibilities: \(a_4 = 1 \) and \(a_5 = 15 \), or \(a_4 = 15 \) and \(a_5 = 1 \), or \(a_4 = 3 \) and \(a_5 = 5 \), or \(a_4 = 5 \) and \(a_5 = 3 \).

In each of the four cases, we will have \(a_7 = 2 \). We can see why by considering boxes 4–7. We have \(a_4 \times a_5 \times 4 \times a_7 = 120 \), or \(15 \times 4 \times a_7 = 120 \), since \(a_4 \times a_5 = 15 \). Therefore, \(a_7 = \frac{120}{15 \times 4} = 2 \).

Case 1; \(a_4 = 1 \) and \(a_5 = 15 \)
Consider boxes 5 to 8. We have \(a_5 \times 4 \times a_7 \times a_8 = 120 \), or \(15 \times 4 \times 2 \times a_8 = 120 \), or \(a_8 = \frac{120}{15 \times 4 \times 2} = 1 \).
Next, consider boxes 6 to 9. We have \(4 \times a_7 \times a_8 \times x = 120 \), or \(4 \times 2 \times 1 \times x = 120 \), or \(x = \frac{120}{4 \times 2} = 15 \).
Let’s check that \(x = 15 \) satisfies the only other condition in the problem that we have not yet used, that is \(a_{12} = 3 \).
Consider boxes 9 to 12. If \(x = 15 \) and \(a_{12} = 3 \), then \(a_{10} \times a_{11} = \frac{120}{15 \times 3} = \frac{8}{3} \). But \(a_{10} \) and \(a_{11} \) must both be integers, so is not possible for \(a_{10} \times a_{11} = \frac{8}{3} \). Therefore, it must not be possible for \(a_4 = 1 \) and \(a_5 = 15 \), and so we find that there is no solution for \(x \) in this case.

Case 2; \(a_4 = 15 \) and \(a_5 = 1 \)
Consider boxes 5 to 8. We have \(a_5 \times 4 \times a_7 \times a_8 = 120 \), or \(1 \times 4 \times 2 \times a_8 = 120 \), or \(a_8 = \frac{120}{4 \times 2} = 15 \).
Next, consider boxes 6 to 9. We have \(4 \times a_7 \times a_8 \times x = 120 \), or \(x = \frac{120}{4 \times 2 \times 15} = 1 \).
Let’s check that \(x = 1 \) satisfies the only other condition in the problem that we have not yet used, that is \(a_{12} = 3 \).
Consider boxes 7 to 10. Since \(a_7 = 2 \), \(a_8 = 15 \) and \(x = 1 \), then \(a_{10} = \frac{120}{2 \times 15 \times 1} = 4 \). Similarly, \(a_{11} = \frac{120}{15 \times 4 \times 1} = 2 \). Then we have \(x \times a_{10} \times a_{11} \times a_{12} = 1 \times 4 \times 2 \times 3 = 24 \neq 120 \). Therefore, it must not be possible for \(a_4 = 15 \) and \(a_5 = 1 \). There is no solution for \(x \) in this case.
Case 3: $a_4 = 3$ and $a_5 = 5$
Consider boxes 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $5 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{5 \times 4 \times 2} = 3$.
Next, consider boxes 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $x = \frac{120}{4 \times 3 \times 5} = 5$.
Let’s check that $x = 5$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$.
Consider boxes 7 to 10. Since $a_7 = 2$, $a_8 = 3$ and $x = 5$, then $a_{10} = \frac{120}{2 \times 3 \times 5} = 4$. Similarly, $a_{11} = \frac{120}{3 \times 5 \times 4} = 2$. Then we have $x \times a_{10} \times a_{11} \times a_{12} = 5 \times 4 \times 2 \times 3 = 120$. Therefore, the condition that $a_{12} = 3$ is satisfied in the case where $a_4 = 3$ and $a_5 = 5$. If we continue to fill out the entries in the boxes, we obtain the entries shown in the diagram below.

\[
\begin{array}{cccccccccccccc}
5 & 4 & 2 & 3 & 5 & 4 & 2 & 3 & 5 & 4 & 2 & 3 & 5 & 4 \\
\end{array}
\]

We see that $x = 5$ is a possible solution. However, is it the only solution? We have one final case to check.

Case 4: $a_4 = 5$ and $a_5 = 3$
Consider boxes 5 to 8. We have $a_5 \times 4 \times a_7 \times a_8 = 120$, or $3 \times 4 \times 2 \times a_8 = 120$, or $a_8 = \frac{120}{3 \times 4 \times 2} = 5$.
Next, consider boxes 6 to 9. We have $4 \times a_7 \times a_8 \times x = 120$, or $x = \frac{120}{4 \times 3 \times 5} = 3$.
Let’s check that $x = 3$ satisfies the only other condition in the problem that we have not yet used, that is $a_{12} = 3$.
Consider boxes 7 to 10. If $x = 3$ and $a_{12} = 3$, then $a_{10} \times a_{11} = \frac{120}{3 \times 3} = \frac{40}{3}$. But a_{10} and a_{11} must both be integers, so it is not possible for $a_{10} \times a_{11} = \frac{40}{3}$. Therefore, it must not be possible for $a_4 = 5$ and $a_5 = 3$, and so we find that there is no solution for x in this case.

Therefore, the only possible value for x is $x = 5$.

Solution 2
You may have noticed a pattern for the a_i's in Solution 1. We will explore this pattern.

\[
\begin{array}{cccccccccccccc}
a_1 & a_2 & 2 & a_4 & a_5 & 4 & a_7 & a_8 & x & a_{10} & a_{11} & 3 & a_{13} & a_{14} \\
\end{array}
\]

Since the product of any four integers is 120, $a_1 a_2 a_3 a_4 = a_2 a_3 a_4 a_5 = 120$. Since both sides are divisible by $a_2 a_3 a_4$, and each is a positive integer, then $a_1 = a_5$.
Similarly, $a_2 a_3 a_4 a_5 = a_3 a_4 a_5 a_6 = 120$, and so $a_2 = a_6$.
In general, $a_n a_{n+1} a_{n+2} a_{n+3} = a_{n+1} a_{n+2} a_{n+3} a_{n+4}$, and so $a_n = a_{n+4}$.
We can use this along with the given information to fill out the boxes as follows:

\[
\begin{array}{cccccccccccccc}
x & 4 & 2 & 3 & x & 4 & 2 & 3 & x & 4 & 2 & 3 & x & 4 \\
\end{array}
\]

Therefore, $4 \times 2 \times 3 \times x = 120$ and so $x = \frac{120}{4 \times 2 \times 3} = 5$.

\[
\text{QR Code}
\]