Problem of the Week
Problem D and Solution
Medians and Altitudes

Problem

A median is a line segment drawn from the vertex of a triangle to the midpoint of the opposite side. An altitude is a line segment drawn from a vertex of a triangle to the opposite side intersecting at 90°.

In \(\triangle ABC \), \(\angle ACB = 90° \). An altitude is drawn in \(\triangle ABC \) from \(C \) to \(AB \) intersecting at \(D \). A median is drawn in \(\triangle ADC \) from \(A \) meeting \(DC \) at \(M \). The length of the median \(AM \) is 13 and \(AD \) is 12.

Determine the length of \(BD \).

Solution

Solution 1

In this solution we will use Pythagoras’ Theorem.

Since \(M \) is a median in \(\triangle ADC \), \(DM = MC = a \). Let \(AC = b \), \(BD = c \) and \(BC = d \). The variables and the given information, \(AD = 12 \) and \(AM = 13 \), are shown on the diagram.

Since \(\triangle ADM \) contains a right angle at \(D \), \(DM^2 = a^2 = AM^2 - AD^2 = 13^2 - 12^2 = 25 \) and \(a = 5 \) follows. Then \(DC = 2a = 10 \).

Since \(\triangle ADC \) contains a right angle at \(D \), \(AC^2 = b^2 = AD^2 + DC^2 = 12^2 + 10^2 = 244 \) and \(b = \sqrt{244} \) follows.

Since \(\triangle CDB \) contains a right angle at \(D \), \(CB^2 = BD^2 + DC^2 = c^2 + 10^2 = c^2 + 100 \).

\[\therefore d^2 = c^2 + 100. \tag{1} \]

Since \(\triangle ABC \) contains a right angle at \(C \), \(AB^2 = AC^2 + BC^2 \). \(\therefore (12 + c)^2 = (\sqrt{244})^2 + d^2 \) which simplifies to \(144 + 24c + c^2 = 244 + d^2 \).

This further simplifies to \(c^2 + 24c = 100 + d^2 \). \(\tag{2} \)

Substituting for \(d^2 \) from (1) into (2), we obtain \(c^2 + 24c = 100 + c^2 + 100 \). Simplifying we get \(24c = 200 \) and \(c = \frac{25}{3} \) follows.

\[\therefore \text{the length of } BD = \frac{25}{3}. \]
Solution 2

From the first solution, we will pick up the computed values $AC = \sqrt{244}$ and $DC = 10$.

In $\triangle ADC$ and $\triangle ACB$, $\angle ADC = \angle ACB = 90^\circ$ and $\angle DAC = \angle BAC$, a common angle. So $\triangle ADC \sim \triangle ACB$. From similar triangles, it follows that

$$\frac{AD}{AC} = \frac{AC}{AB} \quad \text{“Cross-Multiplying”,} \quad 12c + 144 = 244$$

$$12c = 100$$

$$c = \frac{25}{3}$$

```
C
```

But $c = BD$, so the length of BD is $\frac{25}{3}$.

Solution 3

Position $\triangle ABC$ so that AB lies along the y-axis, C is on the positive x-axis and altitude DC lies along the positive x-axis with D at the origin. Since AM is a median in $\triangle ADC$, $DM = MC = a$. Then M has coordinates $(a,0)$ and C has coordinates $(2a,0)$. Since $AD = 12$, A has coordinates $(0,12)$. Since B is on the y-axis, let B have coordinates $(0,b)$ with $b < 0$.

In $\triangle ADM$, $DM^2 = AM^2 - AD^2 = 13^2 - 12^2 = 25$ and $DM = 5$ follows. Therefore $a = 5$, $2a = 10$ and C has coordinates $(10,0)$.

```
C(2a,0)
```

slope $AC = \frac{12 - 0}{0 - 10} = \frac{-6}{5}$; slope $BC = \frac{b - 0}{0 - 10} = \frac{b}{-10}$

```
C(10,0)
```

Since $\angle ACB = 90^\circ$, $AC \perp BC$ and their slopes should be negative reciprocals.

```
A(0,12)
```

\[\therefore \frac{b}{-10} = \frac{5}{6} \]

\[6b = -50 \]

\[b = \frac{-25}{3} \]

```
B(0,b)
```

It then follows that the coordinates of B are \(0, \frac{-25}{3}\). The length of BD is the distance from D, the origin, to the point B which is $\frac{25}{3}$ units.