Problem of the Week
Problem D and Solution
Unknown Volume

Problem
The side, front and top faces of a rectangular solid have areas of $\frac{x}{3}, 3y,$ and $100xy$ cm2, respectively. Determine the volume of the rectangular solid in terms of x and y.

Solution
Since $3y$ and $\frac{x}{3}$ are surface areas, then x and y must be positive. Let the length, height and width of the rectangular solid be a, b, c, respectively.

To determine the volume we need to find the product abc.

Since the area of the side is $\frac{x}{3}$, then $bc = \frac{x}{3}$. (1)
Since the area of the front is $3y$, then $ab = 3y$. (2)
Since the area of the top is $100xy$, then $ac = 100xy$. (3)

Multiplying the left sides and multiplying the right sides of each of the equations (1), (2) and (3), we obtain:

\[(bc)(ab)(ac) = \left(\frac{x}{3}\right)(3y)(100xy)\]
\[a^2b^2c^2 = 100x^2y^2\]
\[(abc)^2 = (10xy)^2\]

Taking the square root, $abc = 10xy$, since all quantities are positive.

But abc is the volume. Therefore the volume of the rectangular solid, in terms of x and y, is $10xy$ cm3.