Problem of the Week
Problem C and Solution
New Heights (Revised)

Problem

An altitude is a line segment drawn from a vertex of a triangle to the opposite side or opposite side extended such that the line segment is perpendicular to the opposite side. In $\triangle ABC$, CD is an altitude. $AB = 18$ cm, $AC = 20$ cm and $CD = 16$ cm. An altitude is drawn from B to AC intersecting at E. Determine the length of BE.

Solution

The area of a triangle is determined using the formula $\text{base} \times \text{height} \div 2$. The height of the triangle is the length of an altitude and the base of the triangle is the length of the side to which a particular altitude is drawn.

\[
\text{Area } \triangle ABC = \frac{(CD) \times (AB)}{2} = \frac{16 \times 18}{2} = 144 \text{ cm}^2
\]

But, \[
\text{Area } \triangle ABC = \frac{(BE) \times (AC)}{2}
\]

\[
144 = \frac{(BE) \times 20}{2}
\]

\[
144 = 10 \times BE
\]

\[
14.4 \text{ cm} = BE
\]

Therefore, the length of altitude BE is 14.4 cm.
Problem of the Week
Problem C and Solution
New Heights (Original Problem)

Problem

An altitude is a line segment drawn from a
vertex of a triangle to the opposite side or
opposite side extended such that the line
segment is perpendicular to the opposite side.
In \(\triangle ABC \), \(CD \) is an altitude. \(AB = 16 \) cm,
\(AC = 12 \) cm and \(CD = 6 \) cm. An altitude is
drawn from \(B \) to \(AC \) extended intersecting at
\(E \). Determine the length of \(BE \).

Solution

The area of a triangle is determined using the formula \(\text{base} \times \text{height} \div 2 \). The
height of the triangle is the length of an altitude and the base of the triangle is
the length of the side to which a particular altitude is drawn.

\[
\text{Area } \triangle ABC = \frac{(CD) \times (AB)}{2} = \frac{6 \times 16}{2} = 48 \text{ cm}^2
\]

But, \(\text{Area } \triangle ABC = \frac{(BE) \times (AC)}{2} \)

\[
48 = \frac{(BE) \times 12}{2} \quad 48 = 6 \times BE \quad 8 \text{ cm} = BE
\]

Therefore, the length of altitude \(BE \) is 8 cm.