Grade 7/8 Math Circles
 October 27, 2021
 Linear and Quadratic Sequences - Solutions

Exercise Solutions

Exercise 1

Identify t_{2}, t_{5}, and t_{8} in the sequence below:

$$
\{4,7,10,13,16,19,22,25,28,31,34, \ldots\}
$$

Exercise 1 Solution

$t_{2}=7, t_{5}=16$, and $t_{8}=25$.

Exercise 2

Identify the linear sequences from the options below. For any sequence that is linear, also state the first differences.
(a) $\{-5,0,5,10\}$
(b) $\left\{\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}, \ldots\right\}$
(c) $\{1,5,1,5,1,5, \ldots\}$
(d) $\{2,4,8,16,32,64\}$
(e) $\{9,9,9,9,9,9, \ldots\}$

Exercise 2 Solution

(a) This is a linear sequence with the common first difference being 5 .
(b) This is a linear sequence with the common first difference being -1 .
(c) This is not a linear sequence since the differences between terms are alternating between
positive 4 and negative 4 .
(d) This is not a linear sequence. The difference between the first two terms is positive 2 , but the difference between the next two terms is positive 4 , and so on.
(e) This is a linear sequence with the common first difference being 0 .

Exercise 3

Express $t_{n}=3 n+1$ in $t_{n}=t_{1}+a(n-1)$ form.

Exercise 3 Solution

Since $t_{1}=4$, we can express the formula as $t_{n}=4+3(n-1)$

Exercise 4

What is the $18^{\text {th }}$ term of the sequence with the formula $t_{n}=-2 n+10$?

Exercise 4 Solution

Substituting $n=18$ into $t_{n}=-2 n+10$ we get $t_{18}=-2(18)+10=-36+10=-26$, so the $18^{\text {th }}$ term is -26 .

Exercise 5

Find the closed-form formula for the sequence $\{-2,5,12,19,26, \ldots\}$ in both $t_{n}=a n+b$ and $t_{n}=t_{1}+a(n-1)$ form.

Exercise 5 Solution

We can use $t_{2}=5$ and $t_{3}=12$ to obtain a system of equations.

$$
\begin{align*}
5 & =2 a+b \tag{1}\\
12 & =3 a+b \tag{2}
\end{align*}
$$

Solving the system using substitution we have

$$
\begin{aligned}
a & =7 \\
b & =-9
\end{aligned}
$$

Therefore, the closed-form formula in both forms are

$$
\begin{aligned}
& t_{n}=7 n-9 \\
& t_{n}=-2+7(n-1)
\end{aligned}
$$

Exercise 6

What is the $20^{\text {th }}$ term in the sequence above? You may use the formula we derived.

Exercise 6 Solution

Substituting $n=20$ into the formula $t_{n}=n^{2}+2 n+3$, we have that

$$
\begin{aligned}
t_{20} & =(20)^{2}+2(20)+3 \\
& =20 \times 20+2 \times 20+3 \\
& =400+40+3 \\
& =443
\end{aligned}
$$

Problem Set Solutions

1. For each sequence below, state if it is linear, quadratic, or neither. For sequences that are linear/quadratic, state the common first/second differences.
(a) $\{1,1,1,1,1, \ldots\}$
(b) $\{35,27,22,20,21,25, \ldots\}$
(c) $\{3,6,12,24,48, \ldots\}$
(d) $\{-3,8,23,42,65\}$
(e) $\{5,0,5,0,5,0, \ldots\}$

Solution:

(a) Linear with common first difference of 0 .
(b) Quadratic with common second difference of 3.
(c) Neither
(d) Quadratic with common second difference of 4.
(e) Neither
2. What is the $6^{\text {th }}$ term of the sequence defined by $t_{n}=\frac{1}{2} n^{2}-2 n+3$?

Solution:

Substituting $n=6$ into the formula, we get that

$$
\begin{aligned}
t_{6} & =\frac{1}{2}(6)^{2}-2(6)+3 \\
& =\frac{1}{2}(36)-12+3 \\
& =18-12+3 \\
& =6+3 \\
& =9
\end{aligned}
$$

3. Find the sequence defined by $t_{n}=\frac{3}{2} n-\frac{1}{2}, 1 \leq n \leq 6$. Is this a linear or quadratic sequence?

Solution:

Since the formula provided is in $t_{n}=a n+b$ form, it is a linear sequence. You can also confirm this fact by computing the differences between each term.

To compute the sequence, substitute n into the formula provided to obtain t_{n}.

$$
\begin{aligned}
& t_{1}=\frac{3}{2}(1)-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=\frac{2}{2}=1 \\
& t_{2}=\frac{3}{2}(2)-\frac{1}{2}=\frac{6}{2}-\frac{1}{2}=\frac{5}{2} \\
& t_{3}=\frac{3}{2}(3)-\frac{1}{2}=\frac{9}{2}-\frac{1}{2}=\frac{8}{2}=4 \\
& t_{2}=\frac{3}{2}(4)-\frac{1}{2}=\frac{12}{2}-\frac{1}{2}=\frac{11}{2} \\
& t_{2}=\frac{3}{2}(5)-\frac{1}{2}=\frac{15}{2}-\frac{1}{2}=\frac{14}{2}=7 \\
& t_{2}=\frac{3}{2}(6)-\frac{1}{2}=\frac{18}{2}-\frac{1}{2}=\frac{17}{2}
\end{aligned}
$$

Therefore, the sequence is $\left\{1, \frac{5}{2}, 4, \frac{11}{2}, 7, \frac{17}{2}\right\}$
4. How many terms are in the sequence $\{3,10,17,24, \ldots, 101\}$?

Solution:

We can see that this is a linear sequence with 7 being the first common difference. Thus, we can find the closed-form formula for t_{n} using the first two terms. Substituting the first two values into $t_{n}=a n+b$ we have

$$
\begin{align*}
3 & =a+b \tag{1}\\
10 & =2 a+b \tag{2}
\end{align*}
$$

Rearranging the first equation we have that $b=3-a$. Substituting this into the second equation we have

$$
\begin{aligned}
10 & =2 a+(3-a) \\
& =2 a-a+3 \\
& =a+3
\end{aligned}
$$

Thus, $a=7$. Substituting the value of a into the first equation we get that $b=-4$. Therefore the closed-form formula for this sequence is $t_{n}=7 n-4$. Since 101 is the last
term in this sequence, we can substitute $t_{n}=101$ into the formula to find its term number, which equals the number of terms in the sequence.

$$
101=7 n-4
$$

Solving this equation gives us $n=15$. Therefore there are 15 terms in this sequence.
5. For each of the following sequences, compute the closed-form formula for the $n^{\text {th }}$ term.
(a) $\{1,3,6,10,15,21, \ldots\}$
(b) $\left\{\frac{3}{2}, 4, \frac{13}{2}, 9, \frac{23}{2}, \ldots\right\}$
(c) $\{15,13,8,0,-11, \ldots\}$

Solution:

(a) Computing the first and second differences we have

We notice that there is a common second difference, so this is a quadratic sequence. Substituting the first three values into $t_{n}=a n^{2}+b n+c$ we have

$$
\begin{align*}
& 1=a+b+c \tag{1}\\
& 3=4 a+2 b+c \tag{2}\\
& 6=9 a+3 b+c \tag{3}
\end{align*}
$$

After solving the system we get that $a=\frac{1}{2}, b=\frac{1}{2}$, and $c=0$.
Therefore the closed-form formula for this sequence is $t_{n}=\frac{1}{2} n^{2}+\frac{1}{2} n$.
(b) Computing the first difference we have

There is a common first difference, so this is a linear sequence.
Since we have the value of a, we can substitute $a=\frac{5}{2}$ into the equation

$$
\frac{3}{2}=a+b
$$

to obtain $b=-1$. (We obtained the equation above by using $t_{1}=\frac{3}{2}$ and $n=1$.
Therefore the closed-form formula for this sequence is $t_{n}=\frac{5}{2} n-1$.
(c) Computing the first and second differences we have

There is a common second difference, so this is a quadratic sequence.
Substituting the first three values into $t_{n}=a n^{2}+b n+c$ we have

$$
\begin{align*}
15 & =a+b+c \tag{1}\\
13 & =4 a+2 b+c \tag{2}\\
8 & =9 a+3 b+c \tag{3}
\end{align*}
$$

After solving the system we get that $a=-\frac{13}{2}, b=\frac{5}{2}$, and $c=14$.
Therefore the closed-form formula for this sequence is $t_{n}=-\frac{3}{2} n^{2}+\frac{5}{2} n+14$.
6. $3 x+1,5 x-3$, and $6 x-1$ are consecutive terms in a linear sequence. Find the value of x.

Solution: A linear sequence has a constant first difference, which means the differences between each consecutive term are equal. Therefore, the differences between $3 x+1,5 x-3$, and $6 x-1$ are also equal. Thus, we can solve for x by equating the differences between
each consecutive term. (If this is unfamiliar to you, feel free to look at online resources about simplifying and solving linear equations)

$$
\begin{aligned}
(5 x-3)-(3 x+1) & =(6 x-1)-(5 x-3) \\
5 x-3-3 x-1 & =6 x-1-5 x+3 \\
2 x-4 & =x+2 \\
x & =6
\end{aligned}
$$

7. In the grids provided below, plot the following sequences using n as the x-axis and t_{n} as the y-axis, or $\left(n, t_{n}\right)$. For example, if the first term of the first sequence is 3 , plot a point on the coordinate (1, 3). Then, connect the points using a line. What do you notice?
(a) The linear sequence $\{1,5,9,13,17\}$
(b) The quadratic sequence $\{1,2,4,7,11,16\}$

Solution:

We notice that the linear sequence makes a straight line, which does not surprise us, since the root word of "linear" is "line". Also notice that the quadratic sequence makes a curve instead of a straight line. This is also a property of quadratic functions, which you will discover in your future math courses!
8. Here are some sequences that are not linear nor quadratic. Find the next 3 terms in each sequence by finding patterns.
(a) $\{1,3,9,27,81,243, \ldots\}$
(b) $\{4,5,9,14,23,37, \ldots\}$
(c) $\{1,8,27,64,125,216, \ldots\}$
(d) $\{1,7,21,46,85,141, \ldots\}$

Solution:

(a) Each term is the previous term multiplied by 3. Therefore the next three terms are

- $t_{7}=243 \times 3=729$
- $t_{8}=729 \times 3=2187$
- $t_{9}=2187 * 3=6561$

Sequences where each term is found by multiplying the previous term by a fixed constant are called geometric sequences.
(b) After the first two terms, each term is the sum of the previous two terms. Therefore the next three terms are

- $t_{7}=23+37=60$
- $t_{8}=37+60=97$
- $t_{9}=60+97=157$

You may have heard of the Fibonacci Sequence, which shares a similar pattern.
(c) Each term is the term number multiplied by itself three times, or $\left(n^{3}\right)$. Therefore the next three terms are

- $t_{7}=7^{3}=343$
- $t_{8}=8^{3}=512$
- $t_{9}=9^{3}=729$

Solution:

(d) This sequence actually has a common third difference!

Therefore the next three terms are

- $t_{7}=141+(56+17+3)=217$
- $t_{8}=217+(76+20+3)=316$
- $t_{9}=316+(99+23+3)=441$

Do you notice a pattern of how we get to the subsequent term?

