

Grade 7/8 Math Circles

October 27, 2021

Linear and Quadratic Sequences - Problem Set

- 1. For each sequence below, state if it is linear, quadratic, or neither. For sequences that are linear/quadratic, state the common first/second differences.
 - (a) $\{1, 1, 1, 1, 1, ...\}$
 - (b) $\{35, 27, 22, 20, 21, 25, ...\}$
 - (c) $\{3, 6, 12, 24, 48, \ldots\}$
 - (d) $\{-3, 8, 23, 42, 65\}$
 - (e) $\{5, 0, 5, 0, 5, 0, \ldots\}$
- 2. What is the 6th term of the sequence defined by $t_n = \frac{1}{2}n^2 2n + 3$?
- 3. Find the sequence defined by $t_n = \frac{3}{2}n \frac{1}{2}$, $1 \le n \le 6$. Is this a linear or quadratic sequence?
- 4. How many terms are in the sequence $\{3, 10, 17, 24, ..., 101\}$?
- 5. For each of the following sequences, compute the closed-form formula for the $n^{\rm th}$ term.
 - (a) $\{1, 3, 6, 10, 15, 21, ...\}$
 - (b) $\left\{ \frac{3}{2}, 4, \frac{13}{2}, 9, \frac{23}{2}, \dots \right\}$
 - (c) $\{15, 13, 8, 0, -11, ...\}$
- 6. 3x + 1, 5x 3, and 6x 1 are consecutive terms in a linear sequence. Find the value of x.
- 7. In the grids provided below, plot the following sequences using n as the x-axis and t_n as the y-axis, or (n, t_n) . For example, if the first term of the first sequence is 3, plot a point on the coordinate (1, 3). Then, connect the points using a line. What do you notice?
 - (a) The linear sequence $\{1, 5, 9, 13, 17\}$
 - (b) The quadratic sequence $\{1, 2, 4, 7, 11, 16\}$

- 8. Here are some sequences that are not linear nor quadratic. Find the next 3 terms in each sequence by finding patterns.
 - (a) $\{1, 3, 9, 27, 81, 243, ...\}$
 - (b) $\{4, 5, 9, 14, 23, 37, \ldots\}$
 - (c) $\{1, 8, 27, 64, 125, 216, ...\}$
 - (d) {1, 7, 21, 46, 85, 141, ...}