Grade 7/8 Math Circles

October 27, 2021

Linear and Quadratic Sequences - Problem Set

1. For each sequence below, state if it is linear, quadratic, or neither. For sequences that are linear/quadratic, state the common first/second differences.
(a) $\{1,1,1,1,1, \ldots\}$
(b) $\{35,27,22,20,21,25, \ldots\}$
(c) $\{3,6,12,24,48, \ldots\}$
(d) $\{-3,8,23,42,65\}$
(e) $\{5,0,5,0,5,0, \ldots\}$
2. What is the $6^{\text {th }}$ term of the sequence defined by $t_{n}=\frac{1}{2} n^{2}-2 n+3$?
3. Find the sequence defined by $t_{n}=\frac{3}{2} n-\frac{1}{2}, 1 \leq n \leq 6$. Is this a linear or quadratic sequence?
4. How many terms are in the sequence $\{3,10,17,24, \ldots, 101\}$?
5. For each of the following sequences, compute the closed-form formula for the $n^{\text {th }}$ term.
(a) $\{1,3,6,10,15,21, \ldots\}$
(b) $\left\{\frac{3}{2}, 4, \frac{13}{2}, 9, \frac{23}{2}, \ldots\right\}$
(c) $\{15,13,8,0,-11, \ldots\}$
6. $3 x+1,5 x-3$, and $6 x-1$ are consecutive terms in a linear sequence. Find the value of x.
7. In the grids provided below, plot the following sequences using n as the x-axis and t_{n} as the y-axis, or $\left(n, t_{n}\right)$. For example, if the first term of the first sequence is 3 , plot a point on the coordinate $(1,3)$. Then, connect the points using a line. What do you notice?
(a) The linear sequence $\{1,5,9,13,17\}$
(b) The quadratic sequence $\{1,2,4,7,11,16\}$

8. Here are some sequences that are not linear nor quadratic. Find the next 3 terms in each sequence by finding patterns.
(a) $\{1,3,9,27,81,243, \ldots\}$
(b) $\{4,5,9,14,23,37, \ldots\}$
(c) $\{1,8,27,64,125,216, \ldots\}$
(d) $\{1,7,21,46,85,141, \ldots\}$
