Grade 7/8 Math Circles
 October 6th, 2021
 Probability - Solutions

Lesson

Activity 1

Use the three formulas listed above to answer the following questions.
(a) What is the probability of rolling an even number on a standard 6-sided die ('die' is singular for 'dice')?
(b) What is the probability of drawing a face-card (Jack, Queen, King) from a standard deck of 52 cards?
(c) How many times does the event A occur if out of 25 total outcomes, A has a probability of 0.64 ?
(d) How many total outcomes are there if the event B occurs 54 times and has a probability of 0.4 ?

Activity 1 Solution

(a) The probability of rolling an even number is $\frac{3}{6}=\frac{1}{2}=0.5$
(b) The probability of drawing a face-card is $\frac{12}{52}=\frac{3}{13}$
(c) Since $S=25$ and $P(A)=0.64$, we have $|A|=S \times P(A)=25 \times 0.64=16$
(d) Since $|B|=54$ and $P(B)=0.4$, we have $S=\frac{|B|}{P(B)}=\frac{54}{0.4}=135$

Activity 2

Suppose we have a standard deck of 52 cards and we randomly draw a card. Determine the probability of the following intersection of events. Show your work.
(a) $A \cap B=$ the card is a Spade AND the card is a 7 .
(b) $A \cap B=$ the card is a Spade AND the card is a Diamond.
(c) $A \cap B=$ the card is greater than 5 AND the card is not a face-card.

Activity 2 Solution

(a) Of the 52 cards in the deck, there is only 1 card that is both a Spade and a 7 (the 7 of Spades), so $P(A \cap B)=\frac{1}{52}$
(b) Of the 52 cards in the deck, there are 0 cards that are both a Spade and a Diamond, so $P(A \cap B)=\frac{0}{52}=0$
(c) Of the 52 cards in the deck, there are 20 cards that are greater than 5 and not face-cards $(6,7,8,9,10$ of each suit $)$, so $P(A \cap B)=\frac{20}{52}=\frac{5}{13}$

Activity 3

Determine if the following events are independent or dependent. If they are independent then solve for the probability of the intersection, $A \cap B$.
(a) When flipping a coin, $A=$ first flip is Heads, and $B=$ second flip is Tails.
(b) When flipping a coin, $A=$ first flip is Heads, and $B=$ second flip is Heads.
(c) When rolling a 6 -sided die, $A=$ value is even, and $B=$ value is 2 .
(d) In a student council election, there are 10 candidates, with 4 of them in grade 7 and 6 of them in grade 8. There are two positions available: President and Treasurer; with $A=$ the President is in grade 7 , and $B=$ the Treasurer is in grade 8 .

Activity 3 Solution

(a) The outcomes of different coin flips do not affect one another, so the events A and B are independent. Thus, $P(A \cap B)=P(A) \times P(B)=0.5 \times 0.5=0.25$.
(b) The outcomes of different coin flips do not affect one another, so the events A and B are independent. Thus, $P(A \cap B)=P(A) \times P(B)=0.5 \times 0.5=0.25$
(c) Since the events are for the same dice-roll, instead of different dice-rolls, the event A will certainly affect B, and vice versa, so the events are dependent.
(d) The outcome of either position will result in 1 less person being eligible for the other position, which will affect the probability. Thus, the events A and B are dependent.

Activity 4

Find $P(A \mid B)$ for each of the following using the formulas on the previous page.
(a) $P(A \cap B)=0.4$ and $P(B)=0.6$
(b) $P(A \cap B)=0$ and $P(B)=0.7$
(c) $P(A \cap B)=0.5$ and $P(B)=1$

Activity 4 Solution

(a) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.4}{0.6}=0.24$
(b) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{0.7}=0$
(c) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.5}{1}=0.5$

Problem Set

1. A 6 -sided die is rolled, where each side has a number between 1 and 6 .
(a) What is the probability of rolling a 2 ?
(b) What is the probability of rolling a 6 ?
(c) What is the probability of rolling a 1 or 5 ?
(d) What is the probability of rolling a number greater than or equal to 3 ?

Solution:

(a) The probability of rolling a 2 is $\frac{1}{6}$
(b) The probability of rolling a 6 is $\frac{1}{6}$
(c) The probability of rolling a 1 or 5 is $\frac{2}{6}$ or $\frac{1}{3}$
(d) The probability of rolling a number greater than or equal to 3 is $\frac{4}{6}$ or $\frac{2}{3}$
2. There are 50 monkeys in an exhibit at the zoo. Of these 50 monkeys, 24 are male and the remaining are females. Suppose we were to randomly pick a monkey, with the event $A=$ the monkey is a male.
(a) Determine $P(A)$.
(b) What is \bar{A} and $|\bar{A}|$?
(c) Use any method to determine $P(\bar{A})$.

Solution:

(a) $P(A)=\frac{24}{50}=0.48$
(b) $\bar{A}=$ the monkey is a female, and $|\bar{A}|=26$
(c) $P(\bar{A})=\frac{26}{50}=0.52$ or $P(\bar{A})=1-P(A)=1-0.48=0.52$
3. There are two types of birds in a bird sanctuary: Blue Jays and Cardinals. Let the event $A=$ the bird is a Cardinal, with $|A|=42$ and $P(A)=0.6$.
(a) What is \bar{A} and $P(\bar{A})$?
(b) Determine S.
(c) Use any method to determine $|\bar{A}|$.

Solution:

(a) $\bar{A}=$ the bird is a Blue Jay, and $P(\bar{A})=1-P(A)=1-0.6=0.4$
(b) Rewriting the formula $P(A)=\frac{|A|}{S}$ gives $S=\frac{|A|}{P(A)}=\frac{42}{0.6}=70$
(c) $|\bar{A}|=S-\bar{A}=70-42=28$, or $|\bar{A}|=S \times P(\bar{A})=70 \times 0.4=28$
4. Suppose we have two independent events A and B, where $P(A)=0.35$ and $P(B)=0.8$. Determine $P(A \cap B)$.

Solution: Since A and B are independent, $P(A \cap B)=P(A) \times P(B)=0.35 \times 0.8=0.28$
5. Suppose we have two events A and B, where $P(A \cap B)=0.3$ and $P(B)=0.75$. Determine $P(A \mid B)$.

Solution: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.3}{0.75}=0.4$
6. For two events A and B, we have $P(A)=0.5, P(B)=0.6$, and $P(A \cap B)=0.3$.
(a) Determine $P(A \mid B)$.
(b) Determine $P(B \mid A)$.
(c) Using the results from parts (a) and (b), are A and B independent or dependent?

Solution:

(a) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.3}{0.6}=0.5$
(b) $P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.3}{0.5}=0.6$
(c) Since $P(A \mid B)=P(A), P(B \mid A)=P(B)$, and $P(A \cap B)=P(A) \times P(B)$, we know that A and B must be independent.
7. In a sack of marbles, the marbles are categorized by the following attributes that have no influence on one another: the marbles are either transparent or opaque; and the marbles are either red or blue. The events are $A=$ the marble is opaque, and $B=$ the marble is red. There are a total of 125 marbles in the sack, with $P(A)=0.56$ and $P(\bar{B})=0.4$.
(a) Determine $S,|A|,|\bar{A}|,|B|$, and $|\bar{B}|$.
(b) Are the events A and B independent or dependent? Explain.
(c) Determine $P(A \cap B), P(A \cap \bar{B}), P(\bar{A} \cap B)$, and $P(\bar{A} \cap \bar{B})$.
(d) What is the sum of the probabilities from part (c)? Why is this the case?

Solution:

(a) $S=125$
$|A|=S \times P(A)=125 \times 0.56=70$
$|\bar{A}|=S-|A|=125-70=55$
$|\bar{B}|=S \times P(\bar{B})=125 \times 0.4=50$
$|B|=S-|\bar{B}|=125-50=75$
(b) The events A and B are independent because whether a marble is transparent or opaque does not affect the colour of the marble.
(c) Since the events are all independent:
$P(A \cap B)=P(A) \times P(B)=0.56 \times[1-P(\bar{B})]=0.56 \times[1-0.4]=0.56 \times 0.6=0.336$
$P(A \cap \bar{B})=P(A) \times P(\bar{B})=0.56 \times 0.4=0.224$
$P(\bar{A} \cap B)=P(\bar{A}) \times P(B)=[1-P(A)] \times[1-P(\bar{B})]=[1-0.56] \times[1-0.4]=$ $0.44 \times 0.6=0.264$
$P(\bar{A} \cap \bar{B})=P(\bar{A}) \times P(\bar{B})=[1-P(A)] \times 0.4=[1-0.56] \times 0.4=0.44 \times 0.4=0.176$
(d) $P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B)+P(\bar{A} \cap \bar{B})=0.336+0.224+0.264+0.176=1$ The sum of these probabilities is 1 because these are all the possible combinations we can have for the marbles; opaque and red, opaque and blue, transparent and red, or transparent and blue.
8. Use the Number of Pairings formula to determine how many pairings there are for the given number of people.
(a) 1 person
(b) 2 people
(c) 10 people
(d) 50 people
(e) 100 people

Solution:

(a) For $n=1$, Number of Pairings $=\frac{n \times(n-1)}{2}=\frac{1 \times(1-1)}{2}=\frac{1 \times 0}{2}=\frac{0}{2}=0$
(b) For $n=2$, Number of Pairings $=\frac{n \times(n-1)}{2}=\frac{2 \times(2-1)}{2}=\frac{2 \times 1}{2}=\frac{2}{2}=1$
(c) For $n=10$, Number of Pairings $=\frac{n \times(n-1)}{2}=\frac{10 \times(10-1)}{2}=\frac{10 \times 9}{2}=\frac{90}{2}=45$
(d) For $n=50$, Number of Pairings $=\frac{n \times(n-1)}{2}=\frac{50 \times(50-1)}{2}=\frac{50 \times 49}{2}=\frac{2450}{2}=$ 1225
(e) For $n=100$, Number of Pairings $=\frac{n \times(n-1)}{2}=\frac{100 \times(100-1)}{2}=\frac{100 \times 99}{2}=$ $\frac{9900}{2}=4950$
9. Use the general formula for the Birthday Problem to determine the probability that at least 2 people have the same birthday for the given number of people. Round to 4 decimal places.
(a) 3 people
(b) 5 people
(c) 8 people
(d) 10 people

Solution:

(a) For $n=3, P(A)=1-\left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365}\right]=1-0.9918=0.0082$
(b) For $n=5, P(A)=1-\left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365}\right]=1-0.9729=0.0271$
(c) For $n=8, P(A)=1-\left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365} \times \frac{360}{365} \times \frac{359}{365} \times \frac{358}{365}\right]=$ $1-0.9257=0.0743$
(d) For $n=10, P(A)=1-\left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365} \times \frac{360}{365} \times \frac{359}{365} \times \frac{358}{365} \times \frac{357}{365} \times \frac{356}{365}\right]=$ $1-0.8831=0.1169$

Bonus Questions

10. A new backpack is released that comes in 1 of 50 different colours. Every student in a school orders exactly one of these backpacks online. Unfortunately, they are not given a choice of colour and the colour of the backpack is picked at random, where each of the 50 colours have the same likelihood of being picked. Suppose that for a given number of students, we want to find the probability for the event $A=$ at least 2 people have the same coloured backpack.
(a) Using a similar method to the Birthday Problem, find a general formula for $P(A)$ where n is the number of people.
(b) Determine $P(A)$ for $n=10$. Round to 4 decimal places.
(c) For what value of n is $P(A)=0.45$ approximately?

Solution:

(a) For $n=$ the number of people, $P(A)=1-\left[\frac{50}{50} \times \frac{49}{50} \times \ldots \times \frac{50-n+1}{50}\right]$
(b) For $n=10, P(A)=1-\left[\frac{50}{50} \times \frac{49}{50} \times \frac{48}{50} \times \frac{47}{50} \times \frac{46}{50} \times \frac{45}{50} \times \frac{44}{50} \times \frac{43}{50} \times \frac{42}{50} \times \frac{41}{50}\right]=$ $1-0.3817=0.6183$
(c) For $n=8, P(A)=1-\left[\frac{50}{50} \times \frac{49}{50} \times \frac{48}{50} \times \frac{47}{50} \times \frac{46}{50} \times \frac{45}{50} \times \frac{44}{50} \times \frac{43}{50}\right]=1-0.5542=0.4458$ which approximates to 0.45 .
11. Determine the general formula for the Birthday Problem in the case of a leap year (366 days in a year).

Solution: For $n=$ the number of people, $P(A)=1-\left[\frac{366}{366} \times \frac{365}{366} \times \ldots \times \frac{366-n+1}{366}\right]$

