Centre for Education in
Mathematics and Computing

Grade 6 Math Circles

Wednesday, March 3, 2021
Exponents - Solutions

Exercise: Calculate 2×5 and 2^{5}. Are the answers the same? Is it possible for $2 \times n$ to equal 2^{n} where n is an integer? If so, what is a possible n ?
Since $2 \times 5=10$ and $2^{5}=32$, there are clearly two different answers. However, 2 multiplied by 1 and 2 to the exponent 1 have the same value. This is the case for 2×2 and 2^{2} as well.

1. Evaluate.
(a) $5^{3}=125$
(c) $2^{6}=64$
(e) $4^{4}=256$
(g) $13^{2}=169$
(b) $\left(\frac{101}{4}\right)^{0}=1$
(d) $1^{27}=1$
(f) $0^{56}=0$
(h) $\phi^{1}=\phi$
2. Write the following as powers. (Hint: For part (c), try factoring the number)
(a) $333 \times 333 \times 333=333^{3}$
(d) 5 to the fourth power $=5^{4}$
(b) 91 to exponent $5=91^{5}$
(e) 100 squared $=100^{2}$
(c) $216=6^{3}$
(f) $7 \times 11 \times 11 \times 7 \times 11 \times 7 \times 7=7^{4} \times 11^{3}$
3. Use the given base to write the following numbers as powers.
(a) 4096, base $=4 ; 4096=4^{6}$
(d) 512 , base $=2 ; 512=2^{9}$
(b) 625 , base $=5 ; 625=5^{4}$
(e) 289 , base $=17 ; 289=17^{2}$
(c) 1000 , base $=10 ; 1000=10^{3}$
(f) 81 , base $=3 ; 81=3^{4}$
4. Express 1 as a power that has a base not equal to 1 .

Recall that any base, not including 0 , raised to the exponent 0 has value 1 . So, one possible answer is 123°.
5. Evaluate.
(a) $(-30)^{4}=30^{4}=810,000$
(e) $(15)^{-3}=\left(\frac{1}{15}\right)^{3}=\frac{1^{3}}{15^{3}}=\frac{1}{3375}$
(b) $47^{-1}=\left(\frac{1}{47}\right)^{1}=\frac{1}{47}$
(f) $\left(-\frac{7}{6}\right)^{5}=\left(-\frac{7^{5}}{6^{5}}\right)=\left(-\frac{16,807}{7,776}\right)$
(c) $2^{-6}=\left(\frac{1}{2}\right)^{6}=\frac{1^{6}}{2^{6}}=\frac{1}{64}$
(g) $(-88)^{0}=1$
(h) $\left(-\frac{4}{25}\right)^{-2}=\left(-\frac{25}{4}\right)^{2}=\left(\frac{25}{4}\right)^{2}=\frac{25^{2}}{4^{2}}=\frac{625}{16}$
6. Fill in the table summarizing different properties of exponents.

Property	Explanation	Example
Base of 1	A power with the base 1 will equal 1 for any exponent.	$1^{23456789}=1$
Base of 0	A power with the base 0 will equal 0 for all exponents except for 0.	$0^{1000}=0$
Exponent of 1	Any base to the exponent 1 will simply return the value of the base itself.	$\pi^{1}=\pi$
Exponent of 0	Any base that is not equal to 0 will equal 1 when raised to the exponent 0.	$\left(-\frac{359^{2}+e}{88}\right)^{0}=1$

Negative Exponent	When a power has a negative exponent, we raise the reciprocal of the base to the corresponding positive exponent.	$\begin{aligned} 10^{-5} & =\left(\frac{1}{10}\right)^{5} \\ & =\frac{1}{100,000} \\ \left(\frac{14}{11}\right)^{-2} & =\left(\frac{11}{14}\right)^{2} \\ & =\frac{121}{196} \end{aligned}$
Negative Base	A negative base to an odd exponent will result in a negative answer while a negative base to an even exponent will result in a positive answer.	$\begin{aligned} (-7)^{3} & =(-1) \times(7)^{3} \\ & =(-1) \times 343 \\ & =-343 \\ \left(-\frac{3}{4}\right)^{6} & =\left(\frac{3}{4}\right)^{6} \\ & =\frac{729}{4096} \end{aligned}$

7. Consider the fraction $\frac{16}{81}$.
(a) Write $\frac{16}{81}$ as a power with a negative base.

Note that $\frac{16}{81}$ is $\left(\frac{2}{3}\right)^{4}$. Since 4 is an even exponent, the power $\left(-\frac{2}{3}\right)^{4}$ can also be simplified to $\frac{16}{81}$. Therefore, $\frac{16}{81}$ can be written as the power $\left(-\frac{2}{3}\right)^{4}$
(b) Write the fraction as a power with a negative base and exponent.

From part (a), we know that the fraction can be written as the power $\left(-\frac{2}{3}\right)^{4}$. If we make the exponent negative, we need to take the reciprocal of the base to retain the same value. So, the fraction can be written $\left(-\frac{3}{2}\right)^{-4}$
8. Use exponent rules to simplify the following expressions. Note that part (g)-(h) are challenge questions.
(a) $\left(\frac{12}{7}\right)^{2}=\frac{12^{2}}{7^{2}}=\frac{144}{49}$
(d) $\left(13^{11}\right)^{2}=13^{11 \times 2}=13^{22}$
(b) $10^{3} \times 10^{7}=10^{3+7}=10^{10}$
(e) $\frac{4^{84}}{4^{83}}=4^{84-83}=4^{1}=4$
(c) $\frac{6^{38}}{6^{6}}=6^{38-6}=6^{32}$
(f) $\left(9^{7}\right)^{7}=9^{7 \times 7}=9^{49}$
(g) $a b^{2} \times b c^{2} \times a b c=a^{1} b^{2} \times b^{1} c^{2} \times a^{1} b^{1} c^{1}=a^{1+1} b^{2+1+1} c^{2+1}=a^{2} b^{4} c^{3}$
(h) $\left(8 u^{5} v^{4}\right)^{12}=8^{1 \times 12} u^{5 \times 12} v^{4 \times 12}=8^{12} u^{60} v^{48}$
9. Fill in the blanks with $<,>$, or $=$ to complete the inequality.
(a) $2^{4}=4^{2}$
(c) $99^{0}>0^{45}$
(e) $7^{-3}<7^{-1}$
(b) $6^{-3}<6^{3}$
(d) $(-1)^{27}<1^{27}$
(f) $4^{-6}>(-4)^{-7}$
10. The human brain has $\frac{\left(10^{15}\right)\left(10^{31}\right)}{\left(10^{3}\right)^{2^{2}}}$ neuronal connections. Express this number as a single power.
Using exponent rules, we can simplify the expression as follow:

$$
\begin{aligned}
\frac{\left(10^{15}\right)\left(10^{31}\right)}{\left(10^{2}\right)^{2^{2}}} & =\frac{10^{15+31}}{\left(10^{8}\right)^{4}} \\
& =\frac{10^{46}}{10^{8 \times 4}} \\
& =\frac{10^{46}}{10^{32}} \\
& =10^{46-32} \\
& =10^{14}
\end{aligned}
$$

Therefore, there are 10^{14} neuronal connections in the human brain.
11. According to the Big Bang Model, the universe has $\left(\frac{\left(5^{26}\right)\left(5^{9}\right)}{5^{34}}\right)^{1^{450}} \times\left(10^{11}\right)^{2}$ stars. Simplify the expression.

Using exponent rules, we can simplify the expression as follow:

$$
\begin{aligned}
\left(\frac{\left(5^{26}\right)\left(5^{9}\right)}{5^{34}}\right)^{1^{450}} \times\left(10^{11}\right)^{2} & =\left(\frac{5^{26+9}}{5^{34}}\right)^{1} \times\left(10^{11 \times 2}\right) \\
& =\left(\frac{5^{35}}{5^{34}}\right)^{1} \times\left(10^{22}\right) \\
& =\left(5^{35-34}\right)^{1} \times 10^{22} \\
& =\left(5^{1}\right)^{1} \times 10^{22} \\
& =5^{1 \times 1} \times 10^{22} \\
& =5^{1} \times 10^{22} \\
& =5 \times 10^{22}
\end{aligned}
$$

Therefore, there are 5×10^{22} stars in the universe.
12. Tom had three hamsters at the beginning of the year. After 4 weeks, he now has 243 hamsters. Assuming weekly exponential growth, how much is the population exponentially increasing by every week?

Assuming the population grows exponentially every week, let x represent the weekly exponential growth. After 4 weeks, the population growth can then be represented by x^{4} multiplied by our initial population of 3 hamsters. Note that $3^{4}=81$ and $81 \times 3=243$. So, the population is tripling every week.
13. A bacteria population quadruples in size every 10 minutes. If the initial bacteria population is 7 specimens, what is the population after 1 hour?
Since there are 60 minutes in an hour, the bacteria population will quadruple in size 6 times. The population quadrupling in size 6 times can be represented by the power 4^{6} or 4096. Then, multiplying by the initial population, we get that the bacteria population after 1 hour will be 28, 672 specimens.
14. Rio created a computer algorithm which can process an exponential amount of data and reduce processing time. For example, let x represent the initial amount of data the algorithm can process in one minute. Then, it can process x^{2} amount of data in 2 minutes. Rio calculates that the algorithm is able to process 400 GB of data in 2 minutes. How long would it take to process $3,200,000 \mathrm{~GB}$ of data?
Since $x^{2}=400$, we can observe that x is 20 . So, the algorithm can process an initial amount of 20 GB of data in 1 minute. Then, since $20^{5}=3,200,000$, we can conclude that it would take the algorithm five minutes to process $3,200,000 \mathrm{~GB}$ of data.
15. Magic Morning Coffee shares that 15% of the caffeine in their drink is consumed by the human body every hour. If a teacher had 1 cup of coffee, or 128 mg of caffeine, at 10 AM this morning, how much caffeine is left in their system at 5 PM ?
If 15% of the caffeine is consumed every hour, then 85% remains. Since 7 hours have passed from when the teacher drank their coffee and there was 128 mg of caffeine to start, we can multiply 128 by the power 0.85^{7}. This power represents the amount of caffeine left in their system at the end of 7 hours. Therefore, the teacher has approximately 41.034 mg of caffeine in their body at 5 PM .
16. The half-life of a substance is the amount of time it takes for the quantity of the substance to decrease to half its original value. For example, gallium-67 is a substance used in nuclear medicine with a half life of 80 hours. If a scientist has 288 grams of gallium- 67 at the beginning of an experiment, and 72 grams at the end, how long was the experiment?
Half of the amount of gallium- 67 at the beginning of the experiment is 144 g . Then, half of this amount is 72 g . Thus, the substance has decreased to half its original value twice. In other words, it has gone through 2 half-life periods. Since each half-life is 80 hours, the experiment is 80×2 or 160 hours.

