# Grade 7/8 Math Circles 

November $26^{\text {th }} / 27^{t h} / 28^{t h}, 2019$
Math Jeopardy Solutions

## Introduction

Questions will vary in difficulty with $\$ 100$ questions tending to be the easiest, and $\$ 500$ questions tending to be the hardest. Do your best, good luck and have fun!

## Shapes, Shapes, Shapes

$\$ 100$ What does each label represent?

F - Central Angle
G - Inscribed Angle
H - Chord

$\$ 200$ What is the area of this triangle?
Let $x$ be the missing side length.
Use Pythagorean Theorem to find $x$ :

$$
\begin{aligned}
13^{2} & =5^{2}+x^{2} \\
x^{2} & =169-25 \\
x & =12
\end{aligned}
$$

The area is $\frac{\text { base } \times \text { height }}{2}=\frac{12 \times 5}{2}=30 \mathrm{~cm}^{2}$.

$\$ 300$ Find the missing angles:

Using the fact that opposite angles are equal and using the Z pattern covered in Triangles, $z=75^{\circ}$.
There exists a triangle with angles $59^{\circ}$, $w$, and $90^{\circ}$. Using the fact that the sum of the angles of a triangle is $180^{\circ}$, $w=31^{\circ}$.

$\$ 400$ Find the ratio between the areas of the two rectangles.

Using the Crossed Chord Theorem (CCT) from Circles, $20 \times x=4 \times 5$ so $x=1$.
Then the areas are $100 \mathrm{~cm}^{2}$ and $4 \mathrm{~cm}^{2}$ so the ratio between the areas is $\mathbf{2 5 : 1}$.

$\$ 500$ In the diagram, each of the two circles have centre $O$. Also, $O P: P Q=1: 2$. If the radius of the large circle is 9 , what is the area of the shaded region?

The radius of the large circle, $\mathrm{OQ}=9 \mathrm{~cm}$.
Then $\mathrm{OP}+\mathrm{PQ}=9 \mathrm{~cm}$.
Additionally, $\mathrm{PQ}=2 \times \mathrm{OP}$.
Using this, $\mathrm{OP}+2 \mathrm{OP}=9 \mathrm{~cm}$.
This means $\mathrm{OP}=3 \mathrm{~cm}$.


The area of the larger circle is $9^{2} \pi \mathrm{~cm}^{2}$.
The area of the smaller circle is $3^{2} \pi \mathrm{~cm}^{2}$.
The area of the shaded region is $81 \pi-9 \pi=72 \pi \mathrm{~cm}^{2}$.

## Physics

\$100 Express the following in scientific notation.
0.00000327

$$
3.27 \times 10^{-6}
$$

## $\$ 200$ What is Newton's First Law?

"An object at rest will remain in rest, and an object in motion will remain in motion unless acted upon by an external force."
$\$ 300$ Proportionality A circle has area $A$. If I multiply the diameter of the circle by 3 , what is my new area in terms of $A$ ?
The area of the circle is $A=\pi \times r^{2}$ where $r$ is the radius or $r=\frac{d}{2}$ so $A=\pi \times \frac{d^{2}}{2}$.
Multiplying the diameter by 3 gives $r=\frac{3 d}{2}$. The new area is:

$$
A_{\text {new }}=\pi \times \frac{3 d^{2}}{2}=\pi \times \frac{9 d^{2}}{4}
$$

Comparing this to the previous area gives:

$$
A_{\text {new }}=9 \mathrm{~A}
$$

$\$ 400$ Nicolas pushes open a 4 kg door. The door accelerates at a rate of $9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ away from him. How much force did Nicolas apply to the box?
We know that Force $=$ Mass $\times$ Acceleration. Using this:

$$
\begin{aligned}
& \text { Force }=4 \mathrm{~kg} \times 9 \frac{m}{s^{2}} \\
& \text { Force }=36 N
\end{aligned}
$$

Nicolas applied a force of 9 N .
$\$ 500$ If the following box is accelerating at a rate of $2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, what is its mass?


We know Net Force $=$ Mass $\times$ Acceleration.
Net Force $=93[$ left $]+18[$ right $]+64[$ right $]$
Net Force $=93[\mathrm{left}]-18[\mathrm{left}]-64[\mathrm{left}]$
Net Force $=11$ [left]

$$
\begin{aligned}
\text { Net Force } & =\text { Mass } \times 2 \frac{m}{s^{2}} \\
11 N & =\text { Mass } \times 2 \frac{m}{s^{2}} \\
\text { Mass } & =11 N \div 2 \frac{m}{s^{2}} \\
\text { Mass } & =5.5 \mathrm{~kg}
\end{aligned}
$$

The box has a mass of 5.5 kg .

## It's Probable

$\mathbf{\$ 1 0 0}$ How big is the sample space if you roll three 6 -sided die?
Let event $A$ be the result of the first die.
Let event $B$ be the result of the second die.
Let event $C$ be the result of the third die.
Each of event $A, B, C$ have 6 possible outcomes.
Using the Product Rule, the total number of possible outcomes is $6 \times 6 \times 6=6^{3}=216$.
The sample space has size 216.
$\$ 200$ Six balls, numbered $2,3,4,5,6,7$, are placed in a hat. You select 2 balls without replacement. What is the probability that both balls you choose are prime numbers?
When picking the first ball, there are 6 total choices.
Of the 6,4 are prime numbers (2, 3, 5, 7).
Suppose you pick the first ball and it is prime.
Now you have 5 total choices and 3 of those will be prime since you've already picked one of the other balls with a prime number.
Using the Product Rule, the probability of this is:

$$
\frac{4}{6} \times \frac{3}{5}=\frac{2}{5}
$$

$\$ 300$ The Ministry of Magic is holding a lottery and has sold 2000 tickets. If Hermoine has a $\frac{1}{16}$ chance of winning, how many tickets did she purchase? Let $t$ be the number of tickets Hermoine has.
Since she has a $\frac{1}{16}$ chance of winning, then:

$$
\frac{\text { Number of tickets Hermoine has }}{\text { Total number of tickets }}=\frac{t}{2000}=\frac{1}{16}
$$

Using this we can find that Hermoine purchased $\mathbf{t}=125$ tickets.
$\$ 400$ Sam rolls a fair 4 -sided die containing 1, 2, 3, 4. Tyler rolls a fair 6 -sided die containing $1,2,3,4,5,6$. What is the probability that Sam rolls a number larger than Tyler? Let $(s, t)$ be the pair of numbers that Sam and Tyler roll.
Using the Product Rule, there are a total of $4 \times 6=24$ possible outcomes.
Of the total possible outcomes, the ones that satisfy the condition are:

$$
(2,1),(3,2),(3,1),(4,3),(4,2),(4,1)
$$

The probability is:

$$
\frac{6}{24}=\frac{1}{6}
$$

$\$ 500$ Two different numbers are randomly selected from the set $\{-3,-1,0,2,4\}$ and then multiplied together. What is the probability that the product of the two numbers chosen is 0 ?
Here, we have to pay attention to the fact that in multiplication, $2 \times 4=4 \times 2$ and so the order of the numbers doesn't matter.
Using this, there are 10 different multiplications we can do where the two numbers are different.
Of those 10 , to get a product of 0 , we must have 0 times another number or $(0 \times$ $-3),(0 \times-1),(0 \times 2),(0 \times 4)$.
The probability is:

$$
\frac{4}{10}=\frac{2}{5}
$$

## Sorting Remainders

$\$ 100$ What are all possible remainders when you divide by 9 ?
The possible remainders are $0,1,2,3,4,5,6,7$, and 8 .
$\$ 200$ Evaluate the following:

$$
\begin{aligned}
63 & \equiv \begin{array}{ll}
0 & \bmod 9 \\
42 & \equiv \_2
\end{array} \bmod 5 \\
765 & \equiv \_1
\end{aligned} \quad \bmod 4
$$

$\$ 300$ Reduce the expression:

$$
\begin{aligned}
(81+26) \times(70 & +52) \bmod 7 \\
(81+26) \times(70+52) \bmod 7 & =(4+5) \times(3+0) \bmod 7 \\
& =9 \times 3 \bmod 7 \\
& =27 \bmod 7 \\
& =6 \bmod 7
\end{aligned}
$$

$\$ 400$ Sort the following list of numbers in descending ordering using the insertion method covered in class. How many steps did it take you?

$$
\begin{array}{lllll}
38 & 4 & 13 & 72 & 96
\end{array}
$$

Recall that each time you move the next number from the unsorted list to the sorted list, that counts as 1 step.
Additionally, after you've moved a number to the sorted list, each comparison you make till the number is inserted into the right space is also 1 step.
We first move 38 to the sorted list, that is 1 step.
We then move 4 to the end of the sorted list and the list is in descending order so that is 1 step.
Moving 13 to the end of the sorted list and completing 1 comparison gives 2 steps. Inserting 72 requires 4 steps and inserting 96 requires 5 steps. In total we have:

$$
1+1+2+4+5=13 \text { steps }
$$

$\$ 500$ Reduce the following:

$$
\begin{array}{r}
2^{82} \bmod 3=\left(2^{2}\right)^{41} \quad \bmod 3=(1)^{41} \quad \bmod 3=1 \bmod 3 \\
5^{46} \bmod 3=\left(5^{2}\right)^{23} \bmod 3=(1)^{23}
\end{array} \bmod 3=1 \bmod 3 \begin{aligned}
& \text { mod } 3
\end{aligned}
$$

## Miscellaneous

\$100 Adam and Eve play rock-paper-scissors 10 times. Knowing the following, who won and by how much?

- Eve uses 3 rocks, 6 scissors, 1 paper
- Adam uses 2 rocks, 4 scissors, 4 paper
- There were no ties in all 10 games
- The order of the games is unknown

Note that Eve played 6 scissors. Since there cannot be any ties, then the 2 rocks and 4 papers that Adam played must have been played with the 6 scissors. Of those 6, Eve won 4 with scissors against paper and Adam won 2 with rock against scissors.
In the remaining games, Adam played 4 scissors and Eve played 3 rocks and 1 paper. Of the 4 games, Even won 3 with rock against scissors and Adam won 1 with paper against rock.
In total, Eve won 7 games and Adam won 3.
$\$ 200$ Given the following equivalences, what's the missing number?

$$
\begin{aligned}
& 12=6 \\
& 6=3 \\
& 5=\underline{4}
\end{aligned}
$$

Twelve has 6 letters. Six has 3 letters. Five has 4 letters.
$\$ 300$ The following 16 matches form 8 equilateral triangles. Remove 4 matches to leave exactly equilateral triangles, leaving no loose ends or unused matches.

$\$ 400 \mathrm{Mr}$. and Mrs. Tan have 4 children - 3 boys and 1 girl who each like one of the colours blue, red, green, yellow and the letters P, Q, R, S. Based on the following facts, which child is Darius?

- The oldest child likes the letter Q.
- The youngest child likes green.
- Alfred likes the letter S.
- Brenda has an older brother who likes R.
- The one who likes blue isn't the oldest.
- The one who likes red likes the letter P.
- Charles like yellow.

This is similar to the Einstein riddle. Solving this, you will get that Darius is the second oldest child.
$\$ 500$ Solve the following Sudoku puzzle. Each row, column and $3 \times 3$ square can contain the numbers 1-9 only once.

| 1 | 5 | 9 | 3 | 4 | 2 | 7 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 4 | 5 | 6 | 8 | 3 | 1 | 9 |
| 8 | 3 | 6 | 1 | 9 | 7 | 4 | 5 | 2 |
| 7 | 1 | 8 | 9 | 2 | 6 | 5 | 4 | 3 |
| 4 | 9 | 3 | 8 | 5 | 1 | 6 | 2 | 7 |
| 5 | 6 | 2 | 4 | 7 | 3 | 1 | 9 | 8 |
| 3 | 2 | 1 | 6 | 8 | 5 | 9 | 7 | 4 |
| 9 | 8 | 5 | 7 | 3 | 4 | 2 | 6 | 1 |
| 6 | 4 | 7 | 2 | 1 | 9 | 8 | 3 | 5 |

## Gauss Contest

Solutions for the questions below can be found on the CEMC website under Past Contests.
$\$ 100$ If $x$ is a number between 0 and 1 , which of the following represents the smallest value? (Source: 2011 Gauss (Grade 8), \#17)
(A) $x$
(B) $x^{2}$
(C) $2 x$
(D) $\sqrt{x}$
(E) $\frac{1}{x}$
$\$ \mathbf{2 0 0}$ A fraction is equivalent to $\frac{5}{8}$. Its denominator and numerator add up to 91 . What is the difference between the denominator and numerator of this fraction?
(Source: 2006 Gauss (Grade 7), \#16)
The fraction is $\frac{35}{56}$ and so the difference is 21 .
$\$ 300$ If each of the fours numbers $3,4,6$, and 7 replaces a $\square$, what is the largest possible sum of the fractions shown? $\frac{\square}{\square}+\frac{\square}{\square}$
(Source: 2010 Gauss (Grade 7), \#19)
$\frac{7}{3}+\frac{6}{4}=\frac{23}{6}$
\$400 Lorri took a 240 km trip to Waterloo. On her way there, her average speed was 120 $\mathrm{km} / \mathrm{h}$. She was stopped for speeding, so on her way home her average speed was 80 $\mathrm{km} / \mathrm{h}$. What was her average speed, in $\mathrm{km} / \mathrm{h}$, for the entire round-trip?
(Source: 2007 Gauss (Grade 8), \#20)
96 km/h
$\$ 500$ Five students wrote a quiz with a maximum score of 50 . The scores of four of the students were $42,43,46$ and 49 . The score of the fifth student was $N$. The average (mean) of the five students' scores was the same as the median of the five students' scores. The number of values of N which are possible is?
(Source: 2006 Gauss (Grade 7), \#25)
3 possible values for $N$ : $35,50,45$

## Final Jeopardy

How many different pairs $(m, n)$ can be formed using numbers from the list of integers $\{1$, $2,3, \ldots, 20\}$ such that $m<n$ and $m+n$ is even?
(Source: 2010 Gauss (Grade 7), \#24)
90 different pairs

