
Faculty of Mathematics Centre for Education in

Waterloo, Ontario N2L 3G1 Mathematics and Computing

Grade 7/8 Math Circles

November 19th/20th/21st

Intro to Computer Science Solutions

How Computers Work

Everywhere you look, computers are changing the world. Whether they’re on our desktops,

in our homes, our pockets, or just about anywhere else. While most of us use computers and

technology in our daily lives, many of us don’t really know how computers work.

Over time, humans have created many tools to help make their lives simpler. Certain tools

such as the wheelbarrow, the hammer, the printing press and many others, help humans

with manual work. Eventually humans wondered “Is there a tool that can help us with the

thinking work we do?” As humans worked to create such a machine, they realized it had to

perform four different tasks:

1. Take input

2. Store information

3. Process information

4. Output the results

Computers started out as basic calculators which at the time

was very useful. Now humans use computers to talk to each

other, to play games, to control robots and many more things.

1



The Four Tasks

1. Input

To put it simply, input is the stuff that the world does, or stuff that humans do that makes

the computer do stuff. You can tell a computer what to do with the keyboard, the mouse,

the camera or the microphone. If you wear a computer on your wrist, such as an Apple

Watch, your heartbeat may send commands to the computer. Touchscreens on cellphones

sense your finger and use that movement as input.

2. Storage

Different inputs give the computer information that is stored in the computer’s memory.

3. Processing

A computer’s processor takes information from memory, it manipulates or changes it using a

series of commands and then it sends the processed information back to be stored in memory.

4. Output

How a computer outputs information depends on what the computer is designed to do. A

computer display can show texts, photos, videos or interactive games. The output may also

be commands to control a robot.

Input Output

Storage

Processing

2



Binary Number System

You may have heard that computer work on ones and zeroes. Almost nobody today actually

deals with these ones and zeroes but they play a big role in how computers work on the

inside. Information taken from input is stored and processed using these ones and zeroes

and eventually converted back into something humans understand.

In the decimal number system, we have ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In the binary number system, we only have two digits, 0 and 1.

In the decimal number system, we have the ones digit, the tens, the hundredths, etc.

In the binary number system, we have the ones digit, the twos, the fours, the eights, etc.

Notice that each position is a multiple of two!

All numbers in the decimal number system can be represented as a binary number.

Example: The number 9 can be written as the binary number, 1001. To see why:

(8 × 1) + (4 × 0) + (2 × 0) + (1 × 1) = 9

Each position holds a power of 2 starting at 20 = 1. A binary number of length n would be:

���� ��������� �������� �������� �������� ��������

������ ������ ������ ������ ������ ������

To find the binary number as a decimal number, we simply multiply the 0 or 1 in each

position by the power of 2 of that position and we add it all together.

Example: The binary number 101101 is the decimal number 45. To see why:

(32 × 1) + (16 × 0) + (8 × 1) + (4 × 1) + (2 × 0) + (1 × 1) = 45

3



Exercise Set 1

1. Using 5 digits, represent the following decimal numbers as a binary number.

0 = 00000

1 = 00001

2 = 00010

3 = 00011

4 = 00100

5 = 00101

6 = 00110

7 = 00111

8 = 01000

9 = 01001

10 = 01010

11 = 01011

12 = 01100

13 = 01101

14 = 01110

15 = 01111

16 = 10000

17 = 10001

18 = 10010

19 = 10011

20 = 10100

21 = 10101

22 = 10110

23 = 10111

24 = 11000

25 = 11001

26 = 11010

27 = 11011

28 = 11100

29 = 11101

30 = 11110

2. Represent the following binary numbers as a decimal number.

(a) 1 = 1

(b) 1000000 = 64

(c) 111111 = 63

(d) 00000001 = 1

(e) 100000 = 32

(f) 00000000 = 0

(g) 0010 = 2

(h) 11 = 3

4



Text in Binary

Think of all the letters in the alphabet from a to z.

Let’s assign the following numbers to each letter:

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Now we can represent each letter in its binary form by writing the binary number representing

the position number.

Example:

D O G

4 15 7

00100 01111 00111

Similarly we can find what word a series of binary numbers represents.

Example:

00001 00011 00101

1 3 5

A C E

Exercise: Convert the following binary numbers into text. Notice that it’s 2 words!

01101 00001 10100 01000 00011 01001 10010 00011 01100 00101 10011

First convert each binary number to its decimal number to get:

13 1 20 8 3 9 18 3 12 5 19

Using the chart above to get the corresponding letters, we get: “Math Circles”.

Exercise: Convert your name into a binary code.

Answers may vary.

5



Sorting

Sorting is used every day by almost everyone in one way or another. Books in a library

are sorted by genre and then by author. At school, you may sort your notes and homework

by subject. Your clothes at home may be sorted by type with your socks in one drawer and

your pants in another drawer.

Why do we even sort things?

Look at the following list and find the smallest number:

8 1 5 13

When you looked for the smallest number, did it feel like you took in all four numbers at

once rather than looking at them one at a time? Our brains do an amazing job of processing

small groups of data like this and quickly coming up with an answer. Computers on the

other hand have to look through data one unit at a time and often have to deal with more

data than humans can handle!

Because of this, computer scientist have come up with many ways to sort large amounts of

data quickly and efficiently. There are many different sorting algorithms and we will look

at some today.

Algorithm

Start with data from input.

Do complex calculations.

Stop when answer is found.

An algorithm is a set of steps to accomplish a task. If

you’ve ever solved a Rubik’s Cube, made a paper air-

plane, baked a cookie or cooked a specific recipe, you

followed an algorithm. We tell computers what to do by

creating an algorithm for them to follow. In Computer

Science, algorithms such as the one on the right are used

often.

6



Selection Sort

A selection sort uses the following algorithm to sort a list of numbers into ascending

(increasing) order:

1. Create an empty list for the sorted numbers.

2. Find the smallest number in the unsorted list and add it to the end of the sorted list.

3. Repeat step 2 until the unsorted list is empty.

Example: Use selection sort to sort the following list of numbers:

25 11 64 12 22

Unsorted List Sorted List

25 11 64 12 22 11

25 64 12 22 11

11

11

11

12

12

12

12

25 64 22

25 64

64

22

22

22

25

25 64

6411 12 22 25

Exercise: What would we have to change to get the list in descending order?

Instead of finding the smallest number each time, we would find the largest number and add

it to the end of the sorted list.

7



Insertion Sort

An insertion sort sorts a list of numbers similar to how we sort playing cards in our hands.

This sort uses the following algorithm to sort a list of numbers into ascending (increasing)

order:

1. Create an empty list for the sorted numbers.

2. Move the first number from the unsorted list to the sorted list.

3. Move the next number from the unsorted to the end of sorted and keep comparing it

to the numbers before it until the new number is inserted into the right spot.

4. Repeat step 3 until the unsorted list is empty.

Example: Use insertion sort to sort the following list of numbers:

4 3 2 10 12 1

Unsorted List Sorted List

4 3 2 10 1 4

3

2

2

2

3

3

3

4

4

10

10 12

122 3 4 10

12

3 2 10 112

2 10 112

10 112

112

1

4

4

1

122 3 4 101

8



Bubble Sort

Unlike the sorts mentioned above, bubble sort does not move elements one at a time from

an unsorted list to a sorted list. The bubble sort repeatedly goes through the list and

compares each pair until the largest number is moved to the end of the list. The sort repeats

these steps till the list is sorted into ascending (increasing) order:

1. Look at the first pair of numbers.

2. If they are not in order, swap them.

3. Now look at the next pair. The last element of the previous pair should be the first

element of the new pair.

4. Repeat steps 2 and 3 until you reach the end of the list.

5. Repeat steps 1-4 until you can go through the list without any swaps being made.

Example: Use bubble sort to sort the following list of numbers:

29 14 38 2 5

29 14 38 2 5 → 14 29 38 2 5

14 29 38 2 5 → 14 29 38 2 5

14 29 38 2 5 → 14 29 2 38 5

14 29 2 38 5 → 14 29 2 5 38

14 29 2 5 38 → 14 29 2 5 38

14 29 2 5 38 → 14 2 29 5 38

14 2 29 5 38 → 14 2 5 29 38

14 2 5 29 38 → 14 2 5 29 38

9



Continuing the bubble sort we get:

14 2 5 29 38 → 2 14 5 29 38

2 14 5 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

2 5 14 29 38 → 2 5 14 29 38

Since no swaps were made in the last cycle of the Bubble Sort, then we are done and our

list is sorted.

10



Exercise Set 2

1. Sort the following list of numbers using selection sort.

34 49 6 24 52 17

Unsorted List Sorted List

49 6 24 52 17 6

49 24 52 17 6

6

6

6

17

17

17

17

49 24 52

49 52

52

24

24

24

34

34 49

34

34

34

34

49

52 6 17 24 34 49 52

6 17 24 34 49 52

2. Sort the following list of numbers using insertion sort.

63 13 8 92 27 45

Unsorted List Sorted List

63 13 8 92 45 63

13

8

8

8

13

13

13

63

63

92

9227

9213 27 45 63

27

13 8 92 4527

8 92 4527

92 4527

4527

45

63

63

9213 27 45 638

8

11



3. Sort the following list of numbers using bubble sort.

11 31 65 20 7 48

11 31 65 20 7 48 → 11 31 65 20 7 48

11 31 65 20 7 48 → 11 31 65 20 7 48

11 31 65 20 7 48 → 11 31 20 65 7 48

11 31 20 65 7 48 → 11 31 20 7 65 48

11 31 20 7 65 48 → 11 31 20 7 48 65

11 31 20 7 48 65 → 11 31 20 7 48 65

11 31 20 7 48 65 → 11 20 31 7 48 65

11 20 31 7 48 65 → 11 20 7 31 48 65

11 20 7 31 48 65 → 11 20 7 31 48 65

11 20 7 31 48 65 → 11 20 7 31 48 65

11 20 7 31 48 65 → 11 20 7 31 48 65

11 20 7 31 48 65 → 11 7 20 31 48 65

11 7 20 31 48 65 → 11 7 20 31 48 65

11 7 20 31 48 65 → 11 7 20 31 48 65

11 7 20 31 48 65 → 11 7 20 31 48 65

11 7 20 31 48 65 → 7 11 20 31 48 65

7 11 20 31 48 65 → 7 11 20 31 48 65

7 11 20 31 48 65 → 7 11 20 31 48 65

7 11 20 31 48 65 → 7 11 20 31 48 65

7 11 20 31 48 65 → 7 11 20 31 48 65

Go through the list again to see there are no swaps before deciding that it’s sorted.

4. What is another algorithm to sort a list of numbers? Answers may vary.

12



Problem Set

1. Give an example of when you have used an algorithm in your own life.

Answers may vary.

2. Sort the following list of numbers using selection sort.

9 67 32 74 85 11
Unsorted List Sorted List

67 32 74 85 11 9

32 74 85 11 9

9

9

9

11

11

11

11

32 74 85

74 85

85

32

32

32

67

67 74

749 11 32 67

9

67

67

67

74

85 9 11 32 67 74 85

85

3. Sort the following list of numbers using insertion sort.

12 43 68 95 7 21
Unsorted List Sorted List

12 43 68 95 21 12

43

68

12

12

12

43

43

68

68

95

957

9512 21 43 68

7

43 68 95 217

68 95 217

95 217

217

21

12

43

9512 21 43 687

7

13



4. Sort the following list of numbers using bubble sort.

41 84 14 79 26 53

41 84 14 79 26 53 → 41 84 14 79 26 53

41 84 14 79 26 53 → 41 14 84 79 26 53

41 14 84 79 26 53 → 41 14 79 84 26 53

41 14 79 84 26 53 → 41 14 79 26 84 53

41 14 79 26 84 53 → 41 14 79 26 53 84

41 14 79 26 53 84 → 14 41 79 26 53 84

14 41 79 26 53 84 → 14 41 79 26 53 84

14 41 79 26 53 84 → 14 41 26 79 53 84

14 41 26 79 53 84 → 14 41 26 53 79 84

14 41 26 53 79 84 → 14 41 26 53 79 84

14 41 26 53 79 84 → 14 41 26 53 79 84

14 41 26 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14 26 41 53 79 84 → 14 26 41 53 79 84

14



5. Sort the following list using selection sort, insertion sort, and bubble sort.

25 13 6 9 1 38

(a) How many steps did the selection sort take?

(Each time you move a number it is a step)

Each time you find the smallest number in the unsorted list and add it to the

sorted list so there are 6 steps.

(b) How many steps did the insertion sort take?

(Each time you move a number and each time you compare it to the numbers in

the sorted list till it is in the right spot is a step)

Each time you move the next number in the unsorted list to the end of the sorted

list is a step so there are 6 moves over. You first move 25. Once you’ve moved

25, you move 13 and make a comparison and move 13 so it’s before 25 and so

you’ve made another move (3 moves so far). Now you move 6 but 6 needs to come

before 25 and before 13 so you move it 2 moves over and you have 6 moves so

far. Repeating this you’ll have overall 3 moves for moving 9, 5 moves for moving

1 and 1 move for moving 38. In total you have 6 + 3 + 5 + 1 = 15 steps.

(c) How many steps did the bubble sort take?

(The comparison of each pair is a step whether you swap them or not)

In each cycle through the list, there are 5 comparisons and if you correctly com-

plete the cycles, you should end up with 5 cycles in total (don’t forget the last

cycle where you go through to make sure there are no comparisons). Thus there

are 25 steps in total.

(d) Which of these methods is the most efficient or the fastest?

In order, the fastes sorts are the selection sort, the insertion sort and finally the

bubble sort.

15



6. As humans, we can quickly observe that the following list is sorted and does not need

to be sorted any further. However, computers can’t see this and given this list, they

will still complete the steps to any of the sorting algorithms above. Go through the

following list using selection sort, insertion sort, and bubble sort as a computer would.

3 8 15 26 27 49

The selection sort and insertion sort would look the same for this list and would be

as follows:

Unsorted List Sorted List

8 15 26 27 49 3

15 26 27 49 3

3

3

3

8

8

8

8

26 27 49

27 49

49

15

15

15

26

26 27

273 8 15 26

3

8

15

26

27

49 3 8 15 26 27 49

49

The bubble sort would look as follows:

3 8 15 26 27 49 → 3 8 15 26 27 49

3 8 15 26 27 49 → 3 8 15 26 27 49

3 8 15 26 27 49 → 3 8 15 26 27 49

3 8 15 26 27 49 → 3 8 15 26 27 49

3 8 15 26 27 49 → 3 8 15 26 27 49

16



7. Sort the following dice using the algorithm specified below:

Make sure the show which colour each die is.

(a) Use insertion sort.

Unsorted Sorted

Remember that in the algorithm for insertion sort, we stop swapping elements

in the sorted list when the previous element is smaller than or equal to the one

being moved along the list.

(b) Use bubble sort.

Ð→

Ð→

Ð→

2 swaps were made so repeat.

Ð→

Ð→

Ð→

No swaps were made so sorting is complete.

17



(c) You probably noticed that there were two repeated elements in this list. We say a

sorting algorithm is stable if repeated elements stay in the same order before and

after a list is sorted. Which of the two algorithms we just looked at are stable?

(Which algorithms resulted in a sorted list where is before ?)

In this case, both the insertion sort and the bubble sort are stable.

8. Sort the following letters in alphabetical order using the algorithms specified below.

M A T H I S F U N

(a) Use insertion sort.

Unsorted List Sorted List

I S F U N M

S F U N A

A

A

A

M

H

H

F U N

U N

N

M

I M

H

I

S

F

U

N A H I M S

A TM

T

T HA

H IT

I SH

S FI

F US

U NF

U N

N

MA F H I N T US

M

T

T

T

T

A F H I M S

UTA F H I M S

T USA F H I M N

(b) Use bubble sort.

You should end up with the same results as above.

18



9. Based on the following steps showing a list of 3 digit numbers being sorted with an

algorithm called Radix Sort, write the down what you think the algorithm is.

365 502 560 299 101 462 401 902

365 502 560 299 101 462 401 902

↓

560 101 401 502 462 902 365 299

↓

560 101 401 502 462 902 365 299

↓

101 401 502 902 560 462 365 299

↓

101 401 502 902 560 462 365 299

↓

101 299 365 401 462 502 560 902

(a) Sort the list the third digit (ones digit).

(b) Sort the list by the second digit (tens digit).

(c) Sort the list by the third digit (hundreds digit).

What makes this algorithm efficient is that instead of sorting the numbers themselves,

each step places the associated digit into its correct category. You can think of each

step as the computer having different buckets for the digits 0 to 9 and, depending on

what that digit is in each element, the algorithm puts the element in its appropriate

bucket. This way, you are not comparing the numbers to each other but individually

putting each in a bucket three times based on its three digits.

19



10. This question compares insertion sort and radix sort, the algorithm you observed in

the previous question.

(a) Sort the following lists of numbers with both insertion and radix:

i. 256 702 524 816

Insertion sort

Unsorted Sorted

256 702 524 816

702 524 816 256

524 816 256 702

816 256 702 524

816 256 524 702

256 524 702 816

Radix sort

256 702 524 816

↓

702 524 256 816

↓

702 816 524 256

↓

256 524 702 816

20



ii. 256 702 524 816 130

Insertion sort

Unsorted Sorted

256 702 524 816 130

702 524 816 130 256

524 816 130 256 702

816 130 256 702 524

816 130 256 524 702

130 256 524 702 816

256 524 702 816 130

256 524 702 130 816

256 524 130 702 816

256 130 524 702 816

130 256 524 702 816

Radix sort

256 702 524 816 130

↓

130 702 524 256 816

↓

702 816 524 130 256

↓

130 256 524 702 816

21



iii. 256 702 524 816 130 888

Insertion sort

Unsorted Sorted

256 702 524 816 130 888

702 524 816 130 888 256

524 816 130 888 256 702

816 130 888 256 702 524

816 130 888 256 524 702

130 888 256 524 702 816

888 256 524 702 816 130

888 256 524 702 130 816

888 256 524 130 702 816

888 256 130 524 702 816

888 130 256 524 702 816

130 256 524 702 816 888

Radix sort

256 702 524 816 130 888

↓

130 702 524 256 816 888

↓

702 816 524 130 256 888

↓

130 256 524 702 816 888

22



(b) Which algorithm took less steps to complete for the three lists?

In general, radix sort uses the least number of steps.

(c) What is the relationship between the length of the lists and the number of steps

it takes to sort them for both algorithms.

For radix sort, only 3 new “steps” were added for every additional element (putting

the new element into the appropriate order for each digit). For insertion sort how-

ever, there is generally a significant increase in the number of steps/comparisons

needed to sort the list with the added element.

11. * For every algorithm we looked at in Math Circles and the problem set, create a worst

case list from the numbers 1, 2, 3, 4, 5, 6, 7, 8. The worst case is the sequence of the

eight numbers which will take the most steps to sort.

Selection sort: 8, 7, 6, 5, 4, 3, 2, 1

The computer has to go through each number to find the smallest number so in this

case, each time it is looking for the smallest number it has to go through the entire list.

Insertion sort: 8, 7, 6, 5, 4, 3, 2, 1

Each time a number is moved to the unsorted list, it needs to be compared to every

number before it before it reaches the right spot.

Bubble sort: 8, 7, 6, 5, 4, 3, 2, 1

The pattern in a bubble sort is to move the largest unsorted number to the end of the

list in each cycle so in a reverse ordered list, it would take the longest.

Radix sort: The initial sequence does not matter since these are all 1 digit num-

bers.

23



12. * When we use bubble sort, we go through and compare each pair in the list one last

time at the end of the algorithm to make sure every element is sorted into its correct

place. However, during these last comparisons, the list is already sorted! How can we

change the algorithm so it does not need to go through the already sorted list one last

time to check that every element is in the correct order.

Go back and look at the previous examples of bubble sort and see if you can notice a

pattern when you are carrying out the steps of sorting.

Let’s take a look at the Tournament of Algorithms example. Notice that after going

through every pair in the list the first time, the largest number has been moved to its

correct spot at the end of the list. After going through the entire list a second time,

the second largest number has been moved to its correct spot as well. If you use the

worst case of Bubble sort from the previous question, you can see that this pattern will

continue until the whole list is sorted. You can change the bubble sort algorithm so

that every time when it finishes going through the entire list, it cuts off the last element

because it is already in the correct place and ignores it for the rest of the sorting. This

means that is some cases we can ignore the last step of checking if everything is in

the right order because we know that to sort n elements, bubble sort will need to go

through the entire list at most n − 1 times and that each time, there will be one less

comparison you have to make.

24


